The Relationship between Changes in Hydro-Climate Factors and Maize Crop Production in the Equatorial African Region from 1980 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Climate Datasets
2.2.2. Maize Crop-Based Data
2.3. Methods
2.3.1. Maize Yield Computation
2.3.2. Index Anomalies
2.3.3. Linear Trends
2.3.4. Correlation Analyses
3. Results and Discussion
3.1. Annual Climatology and Trend Analysis
3.1.1. Climatology
3.1.2. Distribution of Annual Linear Climate Trends
3.1.3. Spatial Pattern of Wet–Dry Trends and Warm–Cool Trends
3.2. Overall and Country-Level Time-Series Analyses
3.2.1. Country-Level Maize Production and Yield Estimates
3.2.2. Descriptive Statistics of Annual Maize and Climate
3.2.3. Country-Wide Trend Analysis of Climate Variables
3.2.4. Statistical Relationship between Maize Production and the Climate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- IPCC. Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland; Cambridge University Press: Cambridge, UK, 2021.
- Vogel, E.; Meyer, R. Chapter 3—Climate Change, Climate Extremes, and Global Food Production—Adaptation in the Agricultural Sector. In Resilience; Zommers, Z., Alverson, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–49. [Google Scholar]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. Global Climate Change Impacts in the United States; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Zhu, P.; Burney, J.; Chang, J.; Jin, Z.; Mueller, N.D.; Xin, Q.; Xu, J.; Yu, L.; Makowski, D.; Ciais, P. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Chang. 2022, 12, 1016–1023. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014.
- Amede, T.; Konde, A.A.; Muhinda, J.J.; Bigirwa, G. Sustainable Farming in Practice: Building Resilient and Profitable Smallholder Agricultural Systems in Sub-Saharan Africa. Sustainability 2023, 15, 5731. [Google Scholar] [CrossRef]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Beyene, S.D. The impact of food insecurity on health outcomes: Empirical evidence from sub-Saharan African countries. BMC Public Health 2023, 23, 338. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food Insecurity in the World (SOFI); Food and Agricultural Organization (FAO) of the United Nations and World Bank: Rome, Italy, 2014. [Google Scholar]
- FAO. World Agriculture towards 2015/2030: An FAO Perspective; FAO: Rome, Italy, 2003; p. 432. [Google Scholar]
- Bjornlund, V.; Bjornlund, H.; van Rooyen, A. Why food insecurity persists in sub-Saharan Africa: A review of existing evidence. Food Secur. 2022, 14, 845–864. [Google Scholar] [CrossRef]
- Edmonds, D.E.; Abreu, S.L.; West, A.; Caasi, D.R.; Conley, T.O.; Daft, M.C.; Desta, B.; England, B.B.; Farris, C.D.; Nobles, T.J. Cereal nitrogen use efficiency in sub Saharan Africa. J. Plant Nutr. 2009, 32, 2107–2122. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; van Wart, J.; Guilpart, N.; Claessens, L.; de Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 2016, 113, 14964–14969. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Lesk, C.; Anderson, W.; Rigden, A.; Coast, O.; Jägermeyr, J.; McDermid, S.; Davis, K.F.; Konar, M. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 2022, 3, 872–889. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Dai, S.; Lv, S.; Wang, J. Increased utilization of lengthening growing season and warming temperatures by adjusting sowing dates and cultivar selection for spring maize in Northeast China. Eur. J. Agron. 2015, 67, 12–19. [Google Scholar] [CrossRef]
- Liu, Z.; Hubbard, K.G.; Lin, X.; Yang, X. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Glob. Chang. Biol. 2013, 19, 3481–3492. [Google Scholar] [CrossRef]
- Troy, T.J.; Kipgen, C.; Pal, I. The impacts of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 2015, 10, 054013. [Google Scholar] [CrossRef]
- Kheir, A.M.S.; Ammar, K.A.; Attia, A.; Elnashar, A.; Ahmad, S.; El-Gioushy, S.F.; Ahmed, M. Cereal Crop Modeling for Food and Nutrition Security. In Global Agricultural Production: Resilience to Climate Change; Ahmed, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 183–195. [Google Scholar]
- Abera, K.; Crespo, O.; Seid, J.; Mequanent, F. Simulating the impact of climate change on maize production in Ethiopia, East Africa. Environ. Syst. Res. 2018, 7, 4. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Carfagna, E. Review of Crop Yield Forecasting Methods and Early Warning Systems. GS SAC—Improving Methods for Crops Estimates; FAO Publication: Rome, Italy, 2013. [Google Scholar]
- Baffour-Ata, F.; Tabi, J.S.; Sangber-Dery, A.; Etu-Mantey, E.E.; Asamoah, D.K. Effect of rainfall and temperature variability on maize yield in the Asante Akim North District, Ghana. Curr. Res. Environ. Sustain. 2023, 5, 100222. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Oyinbo, O.; Manda, J.; Kamara, A.; Idowu, E.O.; Mbavai, J.J. Beyond average: Are the yield and income impacts of adopting drought-tolerant maize varieties heterogeneous? Clim. Dev. 2024, 16, 67–76. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environ. Dev. Sustain. 2021, 23, 23–43. [Google Scholar] [CrossRef]
- Abate, T.; Shiferaw, B.; Menkir, A.; Wegary, D.; Kebede, Y.; Tesfaye, K.; Kassie, M.; Bogale, G.; Tadesse, B.; Keno, T. Factors that transformed maize productivity in Ethiopia. Food Secur. 2015, 7, 965–981. [Google Scholar] [CrossRef]
- Tadesse, T.; Senay, G.B.; Berhan, G.; Regassa, T.; Beyene, S. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 39–54. [Google Scholar] [CrossRef]
- Mozny, M.; Tnka, M.; Zalud, Z.; Hlavinka, P.; Nekovar, J.; Potop, V.; Virag, M. Use of a soil moisture network for drought monitoring in the Czech Republic. Theor. Appl. Climatol. 2012, 107, 88–111. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Laux, P.; Lawin, A.E.; Ige, S.O.; Kunstmann, H. Analysis of hydrometeorological variables over the transboundary Komadugu-Yobe basin, West Africa. J. Water Clim. Chang. 2020, 11, 1339–1354. [Google Scholar] [CrossRef]
- Nooni, I.K.; Hagan, D.F.T.; Wang, G.; Ullah, W.; Li, S.; Lu, J.; Bhatti, A.S.; Shi, X.; Lou, D.; Prempeh, N.A.; et al. Spatiotemporal Characteristics and Trend Analysis of Two Evapotranspiration-Based Drought Products and Their Mechanisms in Sub-Saharan Africa. Remote Sens. 2021, 13, 533. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int. J. Climatol. 2019, 39, 18–30. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Matter, C. Has the Northen Hemisphere been warming or cooling during boreal winter of the last few decades. Glob. Planet. Chang. 2013, 106, 31–38. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Girma, Y.; Kuma, B.; Bedemo, A. Risk Aversion and Perception of Farmers about Endogenous Risks: An Empirical Study for Maize Producers in Awi Zone, Amhara Region of Ethiopia. J. Risk Financ. Manag. 2023, 16, 87. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Adhikari, R.; Foster, T. Rapid expansion of irrigated agriculture in the Senegal River Valley following the 2008 food price crisis. Environ. Res. Lett. 2023, 18, 014037. [Google Scholar] [CrossRef]
- Diasso, U.; Abiodun, B.J. Drought modes in West Africa and how well CORDEX RCMs simulate them. Theor. Appl. Climatol. 2017, 128, 223–240. [Google Scholar] [CrossRef]
- Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; et al. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 114–129. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Ishola, K.A. Variability and trends of actual evapotranspiration over West Africa: The role of environmental drivers. Agric. For. Meteorol. 2021, 308, 108574. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. National Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM) Home Page. Available online: https://lpdaac.usgs.gov/products/srtmgl1v003/ (accessed on 10 December 2023).
- ESACCI. European Space Agency Climate Change Initiative (ESACCI) Land Use Land Cover (LULC) Map. Available online: https://www.esa-landcover-cci.org/ (accessed on 10 December 2023).
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Wayne Higgins, R.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113, D04110. [Google Scholar] [CrossRef]
- Xie, P.; Yatagai, A.; Chen, M.; Hayasaka, T.; Fukushima, Y.; Liu, C.; Yang, S. A Gauge-Based Analysis of Daily Precipitation over East Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Homepage. Available online: ftp://ftp.cdc.noaa.gov/Datasets (accessed on 23 December 2023).
- Global Land Evaporation Amsterdam Model (GLEAM). Homepaage. Available online: www.GLEAM.eu (accessed on 10 December 2023).
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Miralles, D.G.; De Jeu, R.A.M.; Gash, J.H.; Holmes, T.R.H.; Dolman, A.J. Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- US Department of Agriculture. Homepage. Available online: https://www.indexmundi.com/agriculture/ (accessed on 5 January 2024).
- Schulzweida. CDO User Guide (Version 2.0.0). 2021. Available online: https://zenodo.org/records/5614769 (accessed on 29 March 2024).
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Nooni, I.K.; Ogou, F.K.; Lu, J.; Nakoty, F.M.; Chaibou, A.A.; Habtemicheal, B.A.; Sarpong, L.; Jin, Z. Temporal and Spatial Variations of Potential and Actual Evapotranspiration and the Driving Mechanism over Equatorial Africa Using Satellite and Reanalysis-Based Observation. Remote Sens. 2023, 15, 3201. [Google Scholar] [CrossRef]
- Li, X.; Takahashi, T.; Suzuki, N.; Kaiser, H.M. The impact of climate change on maize yields in the United States and China. Agric. Syst. 2011, 104, 348–353. [Google Scholar] [CrossRef]
- Niu, X.-K.; Xie, R.-Z.; Liu, X.; Zhang, F.-L.; Li, S.-K.; Gao, S.-J. Maize Yield Gains in Northeast China in the Last Six Decades. J. Integr. Agric. 2013, 12, 630–637. [Google Scholar] [CrossRef]
- Wang, T.; Li, N.; Li, Y.; Lin, H.; Yao, N.; Chen, X.; Li Liu, D.; Yu, Q.; Feng, H. Impact of climate variability on grain yields of spring and summer maize. Comput. Electron. Agric. 2022, 199, 107101. [Google Scholar] [CrossRef]
- USAID. Agricultural Adaptation to Climate Change in the Sahel; U.S. Agency for International Development: Washington, DC, USA, 2014.
- FAO. Water and Soil Requirements; Food and Agriculture Organisation: Rome, Italy, 1991. [Google Scholar]
- Palmer, P.I.; Wainwright, C.M.; Dong, B.; Maidment, R.I.; Wheeler, K.G.; Gedney, N.; Hickman, J.E.; Madani, N.; Folwell, S.S.; Abdo, G.; et al. Drivers and impacts of Eastern African rainfall variability. Nat. Rev. Earth Environ. 2023, 4, 254–270. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Wang, W.; Fan, X.; Cui, W. Soil moisture droughts in East Africa: Spatiotemporal patterns and climate drivers. J. Hydrol. Reg. Stud. 2022, 40, 101013. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.E.; Clulow, A.D. Present status of soil moisture estimation over the African continent. J. Hydrol. Reg. Stud. 2019, 21, 14–24. [Google Scholar] [CrossRef]
- Yuan, Z.; NourEldeen, N.; Mao, K.; Qin, Z.; Xu, T. Spatiotemporal Change Analysis of Soil Moisture Based on Downscaling Technology in Africa. Water 2022, 14, 74. [Google Scholar] [CrossRef]
- Nooni, I.K.; Wang, G.; Hagan, D.F.T.; Lu, J.; Ullah, W.; Li, S. Evapotranspiration and its Components in the Nile River Basin Based on Long-Term Satellite Assimilation Product. Water 2019, 11, 1400. [Google Scholar] [CrossRef]
- Camberlin, P. Temperature trends and variability in the Greater Horn of Africa: Interactions with precipitation. Clim. Dyn. 2017, 48, 477–498. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Nash, D.J.; Chase, B.M.; Grab, S.W.; Shanahan, T.M.; Verschuren, D.; Asrat, A.; Lézine, A.-M.; Umer, M. Temperature variability over Africa during the last 2000 years. Holocene 2013, 23, 1085–1094. [Google Scholar] [CrossRef]
- Brenya, R.; Zhu, J. Agricultural extension and food security—The case of Uganda. Glob. Food Secur. 2023, 36, 100678. [Google Scholar] [CrossRef]
- Kebede, D.; Emana, B.; Tesfay, G. Impact of land acquisition for large-scale agricultural investments on food security status of displaced households: The case of Ethiopia. Land Use Policy 2023, 126, 106507. [Google Scholar] [CrossRef]
- Kirui, O.K.; Kornher, L.; Bekchanov, M. Productivity growth and the role of mechanisation in African agriculture. Agrekon 2023, 62, 80–97. [Google Scholar] [CrossRef]
- De Groote, H.; Omondi, L.B. Varietal turn-over and their effect on yield and food security—Evidence from 20 years of household surveys in Kenya. Glob. Food Secur. 2023, 36, 100676. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.E. Water Consumption by Agricultural Plants; Academic Press: New York, NY, USA, 1968; pp. 1–22. [Google Scholar]
- Li, Z.; Yang, P.; Tang, H.; Wu, W.; Yin, H.; Liu, Z.; Zhang, L. Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg. Environ. Chang. 2014, 14, 39–48. [Google Scholar] [CrossRef]
- Lobell, D.B. Changes in diurnal temperature range and national cereal yields. Agric. For. Meteorol. 2007, 145, 229–238. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, J.; Li, J.; Jia, Y.; Wang, W.; Li, J.; Lei, Z.; Gao, M. The impact of climate change on maize production: Empirical findings and implications for sustainable agricultural development. Front. Environ. Sci. 2022, 10, 954940. [Google Scholar] [CrossRef]
- Simanjuntak, C.; Gaiser, T.; Ahrends, H.E.; Ceglar, A.; Singh, M.; Ewert, F.; Srivastava, A.K. Impact of climate extreme events and their causality on maize yield in South Africa. Sci. Rep. 2023, 13, 12462. [Google Scholar] [CrossRef]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Olasehinde, T.S.; Qiao, F.; Mao, S. Impact of Improved Maize Varieties on Production Efficiency in Nigeria: Separating Technology from Managerial Gaps. Agriculture 2023, 13, 611. [Google Scholar] [CrossRef]
Number | Countries |
---|---|
1 | South Mauritania |
2 | Senegal |
3 | Guinea-Bissau |
4 | Mali |
5 | Guinea Conakry |
6 | Sierra Leone |
7 | Liberia |
8 | Ivory Coast |
9 | Togo |
10 | Ghana |
11 | Ivory Coast |
12 | Burkina Faso |
13 | ** Niger |
14 | Nigeria |
15 | Chad |
16 | Cameroon |
17 | Central African Republic (CAR) |
18 | ** South Sudan |
19 | Ethiopia |
20 | Sudan |
21 | ** Djibouti |
22 | Somalia |
Country | Maize (tons) | TMIN (°C day−1) | TMAX (°C day−1) | SM (m3m−3 day−1) | E (mm day−1) | Ep (mm day−1) | PRE (mm day−1) |
---|---|---|---|---|---|---|---|
Benin | 713.333 ± 594.865 | 22.854 ± 2.06 | 33.19 ± 2.987 | 0.276 ± 0.079 | 2.064 ± 0.921 | 3.047 | 2.9152.905 |
Burkina Faso | 1055.524 ± 645.654 | 23.271 ± 3.333 | 35.545 ± 3.137 | 0.200 ± 0.088 | 1.335 ± 1.012 | 2.564 | |
Cameroon | 1055.524 ± 645.654 | 20.116 ± 2.693 | 29.781 ± 3.04 | 0.344 ± 0.082 | 2.826 ± 0.947 | 3.922 | |
Chad | 172.571 ± 146.106 | 21.059 ± 4.672 | 35.121 ± 4.395 | 0.132 ± 0.101 | 0.694 ± 1.001 | 818 | 1.851 |
Cote D’Ivoire | 644.738 ± 210.331 | 22.68 ± 1.676 | 32.279 ± 2.39 | 0.297 ± 0.068 | 2.519 ± 0.898 | 2.713 | |
Eritrea | 9.857 ± 9.127 | 20.464 ± 4.623 | 31.627 ± 4.683 | 0.137 ± 0.075 | 1.111 ± 1.488 | 1.406 | |
Ethiopia | 3930.738 ± 2956.233 | 19.571 ± 4.978 | 29.681 ± 4.039 | 0.171 ± 0.082 | 1.072 ± 0.936 | 0.524 | |
Gambia | 23.833 ± 11.603 | 23.074 ± 3.041 | 35.305 ± 2.742 | 0.239 ± 0.084 | 1.470 ± 1.051 | ||
Ghana | 1243.952 ± 723.268 | 23.535 ± 1.689 | 32.143 ± 2.725 | 0.292 ± 0.074 | 2.578 ± 1.010 | ||
Guinea | 352.524 ± 297.549 | 22.213 ± 3.119 | 31.817 ± 2.824 | 0.328 ± 0.095 | 2.361 ± 1.032 | ||
Guinea-Bissau | 16.786 ± 9.307 | 23.671 ± 2.99 | 34.018 ± 2.633 | 0.293 ± 0.094 | 2.021 ± 1.099 | ||
Mali | 992.333 ± 1166.772 | 23.406 ± 4.316 | 35.468 ± 4.069 | 0.148 ± 0.112 | 0.934 ± 1.037 | ||
Mauritania | 8.714 ± 5.923 | 24.915 ± 4.914 | 36.023 ± 4.643 | 0.053 ± 0.04 | 0.224 ± 0.407 | 0.895 | |
Nigeria | 6221.667 ± 3325.835 | 21.472 ± 3.338 | 32.027 ± 3.71 | 0.275 ± 0.112 | 1.983 ± 1.103 | 0.543 | |
CAR | 90.190 ± 36.428 | 19.985 ± 2.534 | 31.65 ± 2.865 | 0.308 ± 0.076 | 2.640 ± 0.980 | 0.282 | |
Senegal | 207.690 ± 176.352 | 23.357 ± 3.29 | 35.801 ± 3.2 | 0.179 ± 0.095 | 1.250 ± 1.123 | 0.739 | |
Somalia | 164.786 ± 90.790 | 21.982 ± 2.842 | 30.724 ± 2.518 | 0.119 ± 0.047 | 0.666 ± 0.926 | ||
Togo | 483.952 ± 256.502 | 22.64 ± 1.717 | 32.539 ± 2.735 | 0.287 ± 0.077 | 2.335 ± 0.853 | 0.422 |
Annual | Growing Seasons | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Variables | SM | Tmax | Tmin | E | EP | P | P | Tmax | Tmin | E | EP | SM | |
Benin | Z | 1.821 | 4.595 * | 4.66 * | 5.072 * | 5.397 * | 0.910 | 1.641 | 4.710 | 2.640 | 5.029 | 4.811 | 1.257 |
β | 0.0002 | 0.025 | 0.022 | 0.0066 | 0.0042 | 0.0030 | 0.0149 | 0.0332 | 0.0145 | 0.0063 | 0.0046 | 0.0002 | |
Burkina | Z | 3.641 * | 3.294 * | 4.530 * | 4.963 * | 5.071 * | 2.449 * | 3.175 * | 2.640 * | 2.212 * | 4.660 * | 4.400 * | 3.338 * |
β | 0.0006 | 0.020 | 0.025 | 0.0072 | 0.0025 | 0.0080 | 0.0246 | 0.0220 | 0.0165 | 0.0074 | 0.0029 | 0.0006 | |
Cameroon | Z | −4.313 * | 1.408 | 5.158 * | 2.406 | 5.917 * | −1.972 | −1.178 | 2.462 * | 3.176 * | 4.443 * | 5.375 * | −4.660 * |
β | −0.0006 | 0.012 | 0.031 | 0.0021 | 0.0050 | −0.0155 | −0.0196 | 0.0504 | 0.0271 | 0.0042 | 0.0059 | −0.0007 | |
CAR | Z | −5.310 * | 1.864 | 1.712 | −0.542 | 6.307 * | −0.672 | 0.393 | 1.927 | 1.178 | 2.796 * | 5.527 * | −5.180 * |
β | −0.0008 | 0.016 | 0.011 | −0.0006 | 0.0052 | −0.0053 | 0.0069 | 0.0235 | 0.0164 | 0.0029 | 0.0061 | −0.0009 | |
Chad | Z | −0.368 | −0.216 | 4.140 * | 0.564 | 6.567 * | 1.040 | 1.606 | 2.569 * | −0.357 | 0.801 | 6.069 * | −0.607 |
β | −0.0000 | −0.002 | 0.023 | 0.0010 | 0.0018 | 0028 | 0.0099 | 0.0409 | −0.0072 | 0.0014 | 0.0022 | −0.0001 | |
Cote D’Ivoire | Z | −1.127 | 5.483 * | 3.208 * | 2.232 * | 5.029 * | 0.152 | 3.033 * | 4.781 * | 2.212 * | 2.406 * | 3.728 * | −1.907 |
β | −0.0001 | 0.032 | 0.033 | 0.0029 | 0.0035 | 0.0011 | 0.0249 | 0.0353 | 0.0185 | 0.0025 | 0.0035 | −0.0003 | |
Eritrea | Z | 0.065 | −1.235 | 5.115 * | 0.217 | 2.688 * | −1.366 | −0.107 | 0.535 | 0.178 | 0.477 | 0.867 | 0.216 |
β | 0.0000 | −0.009 | 0.040 | 0.0003 | 0.0008 | −0.0065 | −0.0006 | 0.0062 | 0.0029 | 0.0010 | 0.0004 | 4.3195 * | |
Ethiopia | Z | −0.433 | 0.455 | 4.985 * | 0.715 | 5.202 * | −1.712 | −0.856 | 1.855 | 0.749 | 1.972 * | 5.310 * | 0.347 |
β | −0.0001 | 0.003 | 0.071 | 0.0013 | 0.0027 | −0.0072 | −0.0063 | 0.0207 | 0.0085 | 0.0033 | 0.0026 | 0.0001 | |
Gambia | Z | 2.275 * | 1.539 | 5.115 | 2.753 | 1.300 | −0.347 | 0.071 | 1.784 | 3.283 * | 2.037 * | −0.195 | 1.951 * |
β | 0.0003 | 0.011 | 0.040 | 0.0032 | 0.0007 | −0.0031 | 0.0020 | 0.0311 | 0.0726 | 0.0036 | −0.0001 | 0.0003 | |
Ghana | Z | −1.972 * | 1.972 * | 3.815 | 1.560 | 4.790 * | −1.019 | 1.820 | 3.604 * | 3.211 * | 2.059 * | 3.641 * | −2.341 * |
β | −0.0003 | 0.016 | 0.055 | 0.0018 | 0.0036 | −0.0033 | 0.0141 | 0.0541 | 0.0312 | 0.0025 | 0.0033 | −0.0003 | |
Guinea | Z | 1.474 | 3.706 * | 5.765 | 3.663 | 4.269 * | 1.084 | 2.997 * | 3.033 * | 2.212 * | 3.360 * | 3.576 * | 0.975 |
β | 0.0001 | 0.030 | 0.105 | 0.0047 | 0.0029 | 0.0075 | 0.0594 | 0.0430 | 0.0522 | 0.0042 | 0.0033 | 0.0001 | |
Guinea-Bissau | Z | 4.010 * | 4.270 * | 3.901 * | 5.353 * | 3.858 * | 0.759 | −0.678 | 2.640 * | 4.460 * | 3.771 * | 3.316 * | 2.948 * |
β | 0.0004 | 0.027 | 0.028 | 0.0069 | 0.0026 | 0.0057 | −0.0084 | 0.0306 | 0.1179 | 0.0061 | 0.0027 | 0.0004 | |
Mali | Z | 3.663 * | 3.425 * | 5.917 * | 5.180 * | 6.199 * | 1.972 * | 3.033 * | 3.925 * | 1.392 | 5.310 * | 5.765 * | 3.381 * |
β | 0.0004 | 0.027 | 0.088 | 0.0054 | 0.0019 | 0.0063 | 0.0226 | 0.0480 | 0.0134 | 0.0066 | 0.0023 | 0.0004 | |
Mauritania | Z | −5.310 * | 2.774 * | 5.397 * | 3.836 * | 3.165 * | 2.275 * | 1.320 | 2.855 * | 4.246 * | 3.576 * | 2.622 * | 3.576 * |
β | −0.0008 | 0.025 | 0.037 | 0.0035 | 0.0006 | 0.0051 | 0.0088 | 0.0429 | 0.0933 | 0.0047 | 0.0006 | 0.0004 | |
Nigeria | Z | −0.866 | −0.303 | 3.468 * | 4.053 * | 5.440 * | −1.170 | −1.035 | 0.785 | 3.818 * | 4.226 * | 4.855 * | −1.777 |
β | 0.0001 | −0.002 | 0.022 | 0.0028 | 0.0033 | −0.0068 | −0.0088 | 0.0181 | 0.0368 | 0.0035 | 0.0038 | −0.0002 | |
Senegal | Z | 4.053 * | 3.858 * | 4.833 * | 5.115 * | 3.034 * | 1.495 | 1.570 | 3.604 | 3.390 * | 4.638 * | 2.233 * | 3.576 * |
β | 0.0006 | 0.032 | 0.045 | 0.0067 | 0.0012 | 0.0056 | 0.0139 | 0.0468 | 0.0441 | 0.0072 | 0.0009 | 0.0006 | |
Somalia | Z | 1.452 | −0.867 | 2.818 * | 2.796 * | 5.332 * | 0.087 | −1.142 | 1.142 | 2.748 * | 2.969 * | 5.787 * | 1.626 |
β | 0.0001 | −0.008 | 0.023 | 0.0044 | 0.0026 | 0.0003 | −0.0041 | 0.0177 | 0.0334 | 0.0057 | 0.0031 | 0.0002 | |
Togo | Z | 0.122 | 4.118 * | 4.508 * | 4.552 * | 5.440 * | 0.694 | 2.177 * | 4.888 | 3.211 * | 4.660 * | 4.725 * | 0.954 |
β | 0.0002 | 0.022 | 0.024 | 0.0065 | 0.0046 | 0.0031 | 0.0223 | 0.0409 | 0.0189 | 0.0061 | 0.0048 | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nooni, I.K.; Ogou, F.K.; Hagan, D.F.T.; Saidou Chaibou, A.A.; Prempeh, N.A.; Nakoty, F.M.; Jin, Z.; Lu, J. The Relationship between Changes in Hydro-Climate Factors and Maize Crop Production in the Equatorial African Region from 1980 to 2021. Atmosphere 2024, 15, 542. https://doi.org/10.3390/atmos15050542
Nooni IK, Ogou FK, Hagan DFT, Saidou Chaibou AA, Prempeh NA, Nakoty FM, Jin Z, Lu J. The Relationship between Changes in Hydro-Climate Factors and Maize Crop Production in the Equatorial African Region from 1980 to 2021. Atmosphere. 2024; 15(5):542. https://doi.org/10.3390/atmos15050542
Chicago/Turabian StyleNooni, Isaac Kwesi, Faustin Katchele Ogou, Daniel Fiifi Tawiah Hagan, Abdoul Aziz Saidou Chaibou, Nana Agyemang Prempeh, Francis Mawuli Nakoty, Zhongfang Jin, and Jiao Lu. 2024. "The Relationship between Changes in Hydro-Climate Factors and Maize Crop Production in the Equatorial African Region from 1980 to 2021" Atmosphere 15, no. 5: 542. https://doi.org/10.3390/atmos15050542
APA StyleNooni, I. K., Ogou, F. K., Hagan, D. F. T., Saidou Chaibou, A. A., Prempeh, N. A., Nakoty, F. M., Jin, Z., & Lu, J. (2024). The Relationship between Changes in Hydro-Climate Factors and Maize Crop Production in the Equatorial African Region from 1980 to 2021. Atmosphere, 15(5), 542. https://doi.org/10.3390/atmos15050542