Spatiotemporal Dynamics of CO2 Emissions in China Based on Multivariate Spatial Statistics
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. Pre-Processing of GDP
2.4. Spatialization of Carbon Emissions
2.4.1. Carbon Emission Statistics and Screening of Variables
2.4.2. Spatial Regression of Carbon Emissions
2.4.3. Study of the Dynamics of Spatial and Temporal Patterns
3. Results and Discussion
3.1. Screening of Carbon Emission Variables
3.2. Spatial Regression of Carbon Emissions
3.3. Study of the Dynamics of Spatial and Temporal Patterns
3.3.1. Provincial Scale
3.3.2. Municipal Scale
4. Conclusions
5. Limitations and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
Term | Definition |
SLM | An important model in spatial econometrics to characterize spatial correlation and spatial dependence. |
downscaled spatial decomposition | Allocating carbon emissions to smaller scale units allows carbon emissions data to be distributed at finer scales. |
carbon emission | The value of cumulative carbon dioxide emitted into the air, which in this paper refers specifically to carbon emissions caused by human activities. |
fitting or regression | The process of model fit between dependent and independent variables. |
image or raster | A basic unit of data storage in GIS, the size of which is expressed in terms of the length of a side. |
References
- Shi, K.; Shen, J.; Wu, Y.; Liu, S.; Li, L. Carbon dioxide (CO2) emissions from the service industry, traffic, and secondary industry as revealed by the remotely sensed nighttime light data. Int. J. Digit. Earth 2021, 14, 1514–1527. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, X.; Cao, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Spatiotemporal dynamics of energy-related CO2 emissions in China based on nighttime imagery and land use data. Ecol. Indic. 2021, 131, 108132. [Google Scholar] [CrossRef]
- Zhou, A.; Xin, L.; Li, J. Assessing the impact of the carbon market on the improvement of China’s energy and carbon emis-sion performance. Energy 2022, 258, 124789. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Wu, R.; Cai, T. Revisiting the environmental Kuznets curve for city-level CO2 emissions: Based on corrected NPP-VIIRS nighttime light data in China. J. Clean. Prod. 2020, 268, 121575. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Y.; Gao, J. Impact of industrial agglomeration on new-type urbanization: Evidence from Pearl River Delta urban agglomeration of China. Int. Rev. Econ. Financ. 2022, 77, 312–325. [Google Scholar] [CrossRef]
- Chen, W.; Wang, G.; Xu, N.; Ji, M.; Zeng, J. Promoting or inhibiting? New-type urbanization and urban carbon emissions efficiency in China. Cities 2023, 140, 104429. [Google Scholar] [CrossRef]
- Chevallier, F.; Zheng, B.; Broquet, G.; Ciais, P.; Liu, Z.; Davis, S.J.; Deng, Z.; Wang, Y.; Breon, F.-M.; O’Dell, C.W. Local Anomalies in the Column-Averaged Dry Air Mole Fractions of Carbon Dioxide Across the Globe During the First Months of the Coronavirus Recession. Geophys. Res. Lett. 2020, 47, e2020GL090244. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ou, J.; Wang, S.; Li, X.; Yan, Y.; Jiao, L.; Liu, Y. Estimating spatiotemporal variations of city-level energy-related CO2 emissions: An improved disaggregating model based on vegetation adjusted nighttime light data. J. Clean. Prod. 2018, 177, 101–114. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Zhao, Q.; Ren, C.; Fu, Y.; Wang, T. Horizontal CO2 Compensation in the Yangtze River Delta Based on CO2 Footprints and CO2 Emissions Efficiency. Int. J. Environ. Res. Public Health 2023, 20, 1369. [Google Scholar] [CrossRef]
- Ma, Q.; He, C.; Wu, J. Behind the rapid expansion of urban impervious surfaces in China: Major influencing factors re-vealed by a hierarchical multiscale analysis. Land Use Policy 2016, 59, 434–445. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Shi, K. What Are the Driving Forces of Urban CO2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels. Int. J. Environ. Res. Public Health 2019, 16, 3692. [Google Scholar] [CrossRef] [PubMed]
- Shi, K. A Study on the Dynamics of Spatial and Temporal Patterns of Carbon Emissions and Influencing Factors in China from a Multi-Scale Perspective. Ph.D. Thesis, Shanghai East China Normal University, Shanghai, China, 2017. [Google Scholar]
- Chen, J.; Gao, M.; Cheng, S.; Liu, X.; Hou, W.; Song, M.; Li, D.; Fan, W. China’s city-level carbon emissions during 1992–2017 based on the inter-calibration of nighttime light data. Sci. Rep. 2021, 11, 3323. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Han, J.; Huang, C. An Improved Vegetation Adjusted Nighttime Light Urban Index and Its Application in Quan-tifying Spatiotemporal Dynamics of Carbon Emissions in China. Remote Sens. 2017, 9, 829. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, Z.; Jiang, L. Advances in Land Use/Land Cover Classification Systems. Resour. Sci. 2011, 33, 1195–1203. [Google Scholar]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s Recent Emission Pattern Shifts. Earths Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. Data Descriptor: China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, Y.; Hang, Y.; Zheng, H.; Li, Y.; Guan, D.; Li, J.; Zhou, Y.; Li, L.; Hubacek, K. City-level emission peak and drivers in China. Sci. Bull. 2022, 67, 1910–1920. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Hubacek, K.; Zheng, B.; Davis, S.J.; Jia, L.; Liu, J.; Liu, Z.; Fromer, N.; Mi, Z.; et al. City-level climate change mitigation in China. Sci. Adv. 2018, 4, eaaq0390. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Guan, D.; Liu, J.; Mi, Z.; Liu, Z.; Liu, J.; Schroeder, H.; Cai, B.; Chen, Y.; Shao, S.; et al. Methodology and appli-cations of city level CO2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Shao, S.; Guan, D. An emissions-socioeconomic inventory of Chinese cities. Sci. Data 2019, 6, 190027. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi- NPP VIIRS- derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Liang, H.; Guo, Z.; Wu, J.; Chen, Z. GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Adv. Space Res. 2020, 65, 481–493. [Google Scholar] [CrossRef]
- Wang, X.; Sutton, P.C.; Qi, B. Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery. Isprs Int. J. Geo-Inf. 2019, 8, 580. [Google Scholar] [CrossRef]
- Wang, Y.; Teng, F.; Wang, M.; Li, S.; Lin, Y.; Cai, H. Monitoring Spatiotemporal Distribution of the GDP of Major Cities in China during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 8048. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, W.; Zhang, Z. Spatial Gridding of GDP in Fujian Province Based on Multi-source Data. J. Hubei Coll. Natl. Nat. Sci. Ed. 2018, 36, 103–109. [Google Scholar]
- Liu, Y.; Yan, Q. Simulation of Spatial Distribution of Carbon Emission Gridding in China Based on SLM Model. Geogr. Geogr. Inf. Sci. 2015, 31, 76–80. [Google Scholar]
- Pan, J.; Zhao, X. Simulation of spatial differences in carbon emissions in China based on spatial regression modeling. J. Environ. Sci. 2018, 38, 2894–2901. [Google Scholar]
- Christopher, N.H.D.; Jan-Peter, M.; Christopher, D.E. Night-time Imagery as a Tool for Global Mapping of Socioeconom-ic Parameters and Greenhouse Gas Emissions. AMBIO A J. Hum. Environ. 2000, 29, 157–162. [Google Scholar]
- Zhang, G.; Guo, X.; Li, D.; Jiang, B. Evaluating the Potential of LJ1-01 Nighttime Light Data for Modeling Socio-Economic Parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Luo, N.; Hu, C. Detection of County Economic Development Using LJ1-01 Nighttime Light Imagery: A Compari-son with NPP-VIIRS Data. Sensors 2020, 20, 6633. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, N.; Deng, H.; Wang, P.; Yang, F.; Qu, J.J.; Zhou, X. Monitoring urban carbon emissions from energy con-sumption over China with DMSP/OLS nighttime light observations. Theor. Appl. Climatol. 2022, 149, 983–992. [Google Scholar] [CrossRef]
- Guo, X.; Yan, Q.; Tan, X.; Liu, S. Simulation of spatial distribution of carbon emissions in Jiangsu Province based on DMSP/OLS and NDVI. World Geogr. Res. 2016, 25, 102–110. [Google Scholar]
- Lv, M.; Zhong, Y. Advances in the application of NDVI in ecological research. Rural Econ. Sci. Technol. 2011, 22, 11–14. [Google Scholar]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Zhang, T.; Song, Y.; Yang, J. Relationships between urbanization and CO2 emissions in China: An empirical analysis of population migration. PLoS ONE 2021, 16, e0256335. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhang, S. Impacts of Urban Spatial Development Patterns on Carbon Emissions: Evidence from Chinese Cities. Land 2022, 11, 2031. [Google Scholar] [CrossRef]
- Desmet, K.; Gomes, J.F.; Ortuño-Ortín, I. The geography of linguistic diversity and the provision of public goods. J. Dev. Econ. 2020, 143, 102384. [Google Scholar] [CrossRef]
- Hu, Y.; Qi, C. A Study of Economic Development Differences among Economies within the China-ASEAN FTA. Econ. Geogr. 2013, 33, e0282167. [Google Scholar]
- Ma, X.; Li, Q.; Shen, Y. Morphological differentiation and geographic types of rural settlements in Jiangsu Province. J. Geogr. 2012, 67, 516–525. [Google Scholar]
- Wang, S.; Zhang, S.; Cheng, L. Investigating the Synergy between CO2 and PM2.5 Emissions Re-duction: A Case Study of China’s 329 Cities. Atmosphere 2023, 14, 1338. [Google Scholar] [CrossRef]
- Le Gallo, J.; Ertur, C. Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980–1995. Pap. Reg. Sci. 2003, 82, 175–201. [Google Scholar] [CrossRef]
- Bai, J.; Li, S.; Kang, Q.; Wang, N.; Guo, K.; Wang, J.; Cheng, J. Spatial Spillover Effects of Renewable Energy on Carbon Emissions in Less-developed Areas of China. Environ. Sci. Pollut. Res. 2022, 29, 19019–19032. [Google Scholar] [CrossRef]
Variant | Random Forest | Stepwise Regression | Lasso | Ridge | Elastic Net | Optimal Subset |
---|---|---|---|---|---|---|
SUM-GDP | √ | √ | √ | √ | ||
SUM-POPULATION | √ | |||||
SUM-NDVI | √ | √ | √ | |||
SUM-NPP-VIIRS | √ | √ | √ | √ | √ | √ |
NDVI-L1 | √ | √ | √ | √ | ||
NDVI-L2 | √ | √ | ||||
NDVI-L3 | √ | √ | √ | |||
NDVI-L4 | √ | √ | √ | √ | ||
NDVI-L5 | √ | √ | ||||
NPP-VIIRS-L1 | √ | √ | √ | √ | ||
NPP-VIIRS-L2 | √ | √ | √ | √ | ||
NPP-VIIRS-L3 | √ | √ | √ | |||
NPP-VIIRS-L5 | √ | √ | √ |
Year | R2-a | W_Carbon-a | R2-b | W_Carbon-b |
---|---|---|---|---|
2012 | 0.637 | 0.742 | 0.990 | 0.988 |
2013 | 0.640 | 0.743 | 0.991 | 0.988 |
2014 | 0.639 | 0.743 | 0.991 | 0.988 |
2015 | 0.638 | 0.743 | 0.991 | 0.987 |
2016 | 0.639 | 0.743 | 0.990 | 0.987 |
2017 | 0.637 | 0.742 | 0.990 | 0.986 |
2018 | 0.636 | 0.741 | 0.988 | 0.985 |
2019 | 0.634 | 0.741 | 0.988 | 0.984 |
2020 | 0.633 | 0.740 | - | - |
2021 | 0.634 | 0.740 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Dai, X.; Zhang, H. Spatiotemporal Dynamics of CO2 Emissions in China Based on Multivariate Spatial Statistics. Atmosphere 2024, 15, 538. https://doi.org/10.3390/atmos15050538
Wang M, Dai X, Zhang H. Spatiotemporal Dynamics of CO2 Emissions in China Based on Multivariate Spatial Statistics. Atmosphere. 2024; 15(5):538. https://doi.org/10.3390/atmos15050538
Chicago/Turabian StyleWang, Mengyao, Xiaoyan Dai, and Hao Zhang. 2024. "Spatiotemporal Dynamics of CO2 Emissions in China Based on Multivariate Spatial Statistics" Atmosphere 15, no. 5: 538. https://doi.org/10.3390/atmos15050538
APA StyleWang, M., Dai, X., & Zhang, H. (2024). Spatiotemporal Dynamics of CO2 Emissions in China Based on Multivariate Spatial Statistics. Atmosphere, 15(5), 538. https://doi.org/10.3390/atmos15050538