Exploring Spatio-Temporal Precipitation Variations in Istanbul: Trends and Patterns from Five Stations across Two Continents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. The Determination of Dry/Wet Days and Warm/Cold Seasons
2.2.2. The Creation of Precipitation Intensity Categories
2.2.3. Trend Analysis
2.2.4. Extreme Precipitation Indices
- PRCPTOT: Annual cumulative precipitation on days with recorded rainfall
- Rx1day: Maximum 1-day precipitation
- Rx5day: Maximum 5-day precipitation
- R10mm: Annual count of days when precipitation amount ≥ 10 mm
- R20mm: Annual count of days when precipitation amount ≥ 20 mm
- R50mm: Annual count of days when precipitation amount ≥ 50 mm
- CDD: Consecutive Dry Days
- CWD: Consecutive Wet Days
3. Annual Total Precipitation Amounts, Wet/Dry Day Statistics, and Warm/Cold Season Statistics
4. Analysis of Station-Based Rainfall Intensity Categories
5. Annual Station-Based Rainfall Total Anomalies
6. Inter-Station Correlations of Annual, Warm-Season, and Cold-Season Total Precipitation
7. Trend Analyses of Precipitation Intensity Categories and Extreme Precipitation Indices
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K. Global precipitation system scale increased from 2001 to 2020. J. Hydrol. 2023, 616, 128768. [Google Scholar] [CrossRef]
- Mondal, A.; Lakshmi, V.; Hashemi, H. Intercomparison of trend analysis of Multisatellite Monthly Precipitation Products and Gauge Measurements for River Basins of India. J. Hydrol. 2018, 565, 779–790. [Google Scholar] [CrossRef]
- Parker, J.K.; McIntyre, D.; Noble, R.T. Characterizing fecal contamination in stormwater runoff in coastal North Carolina, USA. Water Res. 2010, 44, 4186–4194. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Rasmussen, K.L.; Medina, S.; Brodzik, S.R.; Romatschke, U. Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Am. Meteorol. Soc. 2011, 92, 291–298. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Wang, Y. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Glob. Planet. Chang. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Hong, Y.; Sheng, C.; Kavianpour, M.R. Comprehensive evaluation of four high-resolution satellite precipitation products under diverse climate conditions in Iran. Hydrol. Sci. J. 2016, 61, 420–440. [Google Scholar] [CrossRef]
- Berardy, A.; Chester, M.V. Climate change vulnerability in the food, energy, and water nexus: Concerns for agricultural production in Arizona and its urban export supply. Environ. Res. Lett. 2017, 12, 35004. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Montanari, A. Global and regional increase of precipitation extremes under global warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Yang, T.; Li, Q.; Chen, X.; De Maeyer, P.; Yan, X.; Liu, Y.; Zhao, T.; Li, L. Spatiotemporal variability of the precipitation concentration and diversity in Central Asia. Atmos. Res. 2020, 241, 104954. [Google Scholar] [CrossRef]
- Ma, Q.; Lei, H.; Jia, F.; Sun, S.; Yan, P.; Gu, Y.; Feng, G. Interannual variability of extreme precipitation in late summer over west China during 1961–2021. Front. Environ. Sci. 2023, 11, 1185776. [Google Scholar] [CrossRef]
- Seong, C.; Sridhar, V. Hydroclimatic variability and change in the Chesapeake Bay watershed. J. Water Clim. Chang. 2017, 8, 254–273. [Google Scholar] [CrossRef]
- Weldegerima, T.M.; Zeleke, T.T.; Birhanu, B.S.; Zaitchik, B.F.; Fetene, Z.A. Analysis of rainfall trends and its relationship with SST signals in the lake tana basin, Ethiopia. Adv. Meteorol. 2018, 2018, 5869010. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X. Spatiotemporal trends of dryness/wetness duration and severity: The respective contribution of precipitation and temperature. Atmos. Res. 2019, 216, 176–185. [Google Scholar] [CrossRef]
- Jamro, S.; Dars, G.H.; Ansari, K.; Krakauer, N.Y. Spatio-Temporal Variability of Drought in Pakistan Using Standardized Precipitation Evapotranspiration Index. Appl. Sci. 2019, 9, 4588. [Google Scholar] [CrossRef]
- Rahman, M.S.; Islam, A.R.M.T. Are precipitation concentration and intensity changing in Bangladesh overtimes? Analysis of the possible causes of changes in precipitation systems. Sci. Total Environ. 2019, 690, 370–387. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.R.M.T.; Rahman, M.S.; Khatun, R.; Hu, Z. Spatiotemporal trends in the frequency of daily rainfall in Bangladesh during 1975–2017. Theor. Appl. Climatol. 2020, 141, 869–887. [Google Scholar] [CrossRef]
- Mekonen, A.A.; Berlie, A.B. Spatiotemporal variability and trends of rainfall and temperature in the Northeastern Highlands of Ethiopia. Model. Earth Syst. Environ. 2020, 6, 285–300. [Google Scholar] [CrossRef]
- Mumo, L.; Yu, J.; Ayugi, B. Evaluation of spatiotemporal variability of rainfall over Kenya from 1979 to 2017. J. Atm. Solar-Ter. Phys. 2019, 194, 105097. [Google Scholar] [CrossRef]
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Nicola, M. Addendum: More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2017, 7, 154–158. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, M.; Wang, S.; Qiang, F.; Zhu, X.; Dong, L. Changes in daily extreme precipitation events in South China from 1961 to 2011. J. Geogr. Sci. 2015, 25, 58–68. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Gaudio, R. Spatial and temporal variability of daily precipitation concentration in the Sardinia region (Italy). Int. J. Climatol. 2019, 39, 5006–5021. [Google Scholar] [CrossRef]
- Guo, E.; Wang, Y.; Jirigala, B.; Jin, E. Spatiotemporal variations of precipitation concentration and their potential links to drought in mainland China. J. Clean. Prod. 2020, 267, 122004. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Hamouda, M.A.; Mohamed, M.M. Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates. Atmos. Res. 2019, 219, 200–212. [Google Scholar] [CrossRef]
- Pawar, U.; Hire, P.; Gunathilake, M.B.; Ratnayake, U. Spatiotemporal Rainfall Variability and Trends over the Mahi Basin, India. Climate 2023, 11, 163. [Google Scholar] [CrossRef]
- Anderson, T.G.; Anchukaitis, K.J.; Pons, D.; Taylor, M. Multiscale trends and precipitation extremes in the Central American Midsummer Drought. Environ. Res. Lett. 2019, 14, 124016. [Google Scholar] [CrossRef]
- Xiong, J.; Yong, Z.; Wang, Z.; Cheng, W.; Li, Y.; Zhang, H.; Ye, C.; Yang, Y. Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015). Water 2019, 11, 1453. [Google Scholar] [CrossRef]
- Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Hagan, D.F.T.; Nooni, I.K.; Lou, D.; Ullah, I. Trend in Extreme Precipitation Indices Based on Long Term In Situ Precipitation Records over Pakistan. Water 2020, 12, 797. [Google Scholar] [CrossRef]
- Rao, G.V.; Reddy, K.V.; Srinivasan, R.; Sridhar, V.; Umamahesh, N.V.; Pratap, D. Spatio-temporal analysis of rainfall extremes in the flood-prone Nagavali and Vamsadhara Basins in eastern India. Wea. Clim. Ext. 2020, 29, 100265. [Google Scholar] [CrossRef]
- Baltaci, H.; da Silva, M.C.L.; Gomes, H.B. Climatological conditions of the Black Sea-effect snowfall events in Istanbul, Turkey. Int. J. Climatol. 2020, 41, 2017–2028. [Google Scholar] [CrossRef]
- Yavuz, V.; Deniz, A.; Özdemir, E.T. Analysis of a vortex causing sea-effect snowfall in the western part of the Black Sea: A case study of events that occurred on 30–31 January 2012. Nat. Hazards 2021, 108, 819–846. [Google Scholar] [CrossRef]
- Yavuz, V.; Deniz, A.; Özdemir, E.T.; Kolay, O.; Karan, H. Classification and analysis of sea-effect snowbands for Danube Sea area in Black Sea. Int. J. Climatol. 2021, 41, 3139–3152. [Google Scholar] [CrossRef]
- Yavuz, V.; Lupo, A.R.; Fox, N.I.; Deniz, A. Statistical characteristics of sea-effect snow events over the western Black Sea. Theor. Appl. Climatol. 2022, 150, 955–968. [Google Scholar] [CrossRef]
- Yavuz, V.; Lupo, A.R.; Fox, N.I.; Deniz, A. The role of short-wave troughs on the formation and development of sea-effect snowbands in the western Black Sea. Theor. Appl. Climatol. 2022, 149, 501–510. [Google Scholar] [CrossRef]
- Yavuz, V.; Lupo, A.R.; Fox, N.I.; Deniz, A. Meso-Scale Comparison of Non-Sea-Effect and Sea-Effect Snowfalls, and Development of Prediction Algorithm for Megacity Istanbul Airports in Turkey. Atmosphere 2022, 13, 657. [Google Scholar] [CrossRef]
- Yavuz, V.; Lupo, A.R.; Fox, N.I.; Deniz, A. A long-term analysis of thundersnow events over the Marmara Region, Turkey. Nat. Hazards 2022, 114, 367–387. [Google Scholar] [CrossRef]
- Demirtaş, M. The high-impact sea-effect snowstorm of February 2020 over the southern Black Sea. Acta Geophys. 2023, 71, 1361–1371. [Google Scholar] [CrossRef]
- Demirtaş, M. The October 2011 devastating flash flood event of Antalya: Triggering mechanisms and quantitative precipitation forecasting. Q. J. Royal Met. Soc. 2016, 142, 2336–2346. [Google Scholar] [CrossRef]
- Akkoyunlu, B.O.; Baltaci, H.; Tayanc, M. Atmospheric conditions of extreme precipitation events in western Turkey for the period 2006–2015. Nat. Hazards Earth Syst. Sci. 2019, 19, 107–119. [Google Scholar] [CrossRef]
- Baltaci, H. Spatiotemporal variability of climate extremes in the Marmara Region (NW Turkey). Int. J. Global Warm. 2019, 28, 239–252. [Google Scholar] [CrossRef]
- Türkeş, M. Spatial and temporal analysis of annual rainfall variations in Turkey. Int. J. Climatol. 1996, 16, 1057–1076. [Google Scholar] [CrossRef]
- Toros, H. Spatio-temporal precipitation change assessments over Turkey. Int. J. Climatol. 2011, 32, 1310–1325. [Google Scholar] [CrossRef]
- Abbasnia, M.; Toros, H. Trend analysis of weather extremes across the coastal and non-coastal areas (case study: Turkey). J. Earth Syst. Sci. 2020, 129, 95. [Google Scholar] [CrossRef]
- Hadi, S.J.; Tombul, M. Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteor. Appl. 2018, 25, 445–455. [Google Scholar] [CrossRef]
- Şen, Z.; Habib, Z. Spatial analysis of monthly precipitation in Turkey. Theor. Appl. Climatol. 2000, 67, 81–96. [Google Scholar] [CrossRef]
- Kömüşçü, A.Ü.; Aksoy, M. Long-term spatio-temporal trends and periodicities in monthly and seasonal precipitation in Turkey. Theor. Appl. Climatol. 2023, 151, 1623–1649. [Google Scholar] [CrossRef]
- Unal, Y.; Deniz, A.; Toros, H.; Incecik, S. Temporal and spatial patterns of precipitation variability for annual, wet, and dry seasons in Turkey. Int. J. Climatol. 2010, 32, 392–405. [Google Scholar] [CrossRef]
- Yeşilırmak, E.; Atatanır, L. Spatiotemporal variability of precipitation concentration in western Turkey. Nat. Hazards 2016, 81, 687–704. [Google Scholar] [CrossRef]
- Türkeş, M.; Tatlı, H. Use of the spectral clustering to determine coherent precipitation regions in Turkey for the period 1929–2007. Int. J. Climatol. 2010, 31, 2055–2067. [Google Scholar] [CrossRef]
- Eris, E.; Cavus, Y.; Aksoy, H.; Burgan, H.I.; Aksu, H.; Boyacioglu, H. Spatiotemporal analysis of meteorological drought over Kucuk Menderes River Basin in the Aegean Region of Turkey. Theor. Appl. Climatol. 2020, 142, 1515–1530. [Google Scholar] [CrossRef]
- Aksu, H.; Cavus, Y.; Aksoy, H.; Akgul, M.A.; Turker, S.; Eris, E. Spatiotemporal analysis of drought by CHIRPS precipitation estimates. Theor. Appl. Climatol. 2022, 148, 517–529. [Google Scholar] [CrossRef]
- Aksu, H.; Taflan, G.Y.; Yaldiz, S.G.; Akgül, M.A. Evaluation of IMERG for GPM satellite-based precipitation products for extreme precipitation indices over Turkiye. Atmos. Res. 2023, 291, 106826. [Google Scholar] [CrossRef]
- Aksu, H.; Cetin, M.; Aksoy, H.; Yaldiz, S.G.; Yildirim, I.; Keklik, G. Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey. Nat. Hazards 2022, 111, 2379–2405. [Google Scholar] [CrossRef]
- Aksu, H.; Akgül, M.A. Performance evaluation of CHIRPS satellite precipitation estimates over Turkey. Theor. Appl. Climatol. 2020, 142, 71–84. [Google Scholar] [CrossRef]
- TSMS—Turkish State Meteorological Service. Turkey’s Climate. Available online: https://mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=ISTANBUL (accessed on 22 September 2023).
- TSMS—Turkish State Meteorological Service. Station Information. Available online: https://www.mgm.gov.tr/kurumsal/istasyonlarimiz.aspx (accessed on 3 September 2023).
- Breinl, K.; Baldassarre, G.; Mazzoleni, M.; Lun, D.; Vico, G. Extreme dry and wet spells face changes in their duration and timing. Environ. Res. Lett. 2020, 15, 074040. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Q.; Wang, Y.; Liang, X. Climatology of warm season cold vortices in East Asia: 1979–2005. Meteorol. Atmos. Phys. 2008, 100, 291–301. [Google Scholar] [CrossRef]
- Joshi, S.; Brown, D.; Busteed, P. Intensification scenarios in projected precipitation using stochastic weather generators: A case study of central Oklahoma. Theor. Appl. Climatol. 2021, 144, 1285–1296. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W.; Easterling, D.R.; Quayle, R.G. Indices of climate change for the United States. Bull. Am. Meteorol. Soc. 1996, 77, 279–292. [Google Scholar] [CrossRef]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, T.; Dai, A.; Han, Z. Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013. J. Clim. 2015, 28, 6960–6978. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Statist. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Yadav, R.; Tripathi, S.K.; Pranuthi, G.; Dubey, S.K. Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. J. Agrometeorol. 2014, 16, 166–171. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- WCRP—World Climate Research Programme. Expert Team on Climate Change Detection and Indices (ETCCDI). Available online: https://www.wcrp-climate.org/etccdi (accessed on 3 September 2023).
- Baltaci, H.; Kindap, T.; Unal, A.; Karaca, M. Analysis of Synoptic Weather Types and Its Influence on Precipitation in the Marmara Region (NW Turkey). In Proceedings of the EGU General Assembly Conference 2012, Vienna, Austria, 22–27 April 2012; p. 4171. [Google Scholar]
- Baltacı, H.; Kındap, T.; Ünal, A.; Karaca, M. The influence of atmospheric circulation types on regional patterns of precipitation in Marmara (NW Turkey). Theor. Appl. Climatol. 2017, 127, 563–572. [Google Scholar] [CrossRef]
- Baltaci, H.; Göktürk, O.M.; Kındap, T.; Ünal, A.; Karaca, M. Atmospheric circulation types in Marmara Region (NW Turkey) and their influence on precipitation. Int. J. Climatol. 2014, 35, 1810–1820. [Google Scholar] [CrossRef]
- Akkoyunlu, B.O.; Baltaci, H.; Tayanc, M. The Climatology, precipitation types and atmospheric conditions of extreme precipitation events in western Turkey. Nat. Hazards Earth Syst. Sci. 2018. Available online: https://nhess.copernicus.org/preprints/nhess-2018-29/nhess-2018-29.pdf (accessed on 26 February 2024).
- Özdemir, E.T.; Deniz, A.; Sezen, İ.; Aslan, Z.; Yavuz, V. Investigation of thunderstorms over Ataturk International Airport (LTBA) Istanbul. Mausam 2017, 68, 175–180. [Google Scholar] [CrossRef]
- Umakanth, N.; Satyanarayana, G.C.; Naveena, N.; Srinivas, D.; Rao, D.V.B. Statistical and dynamical based thunderstorm prediction over southeast India. J. Earth Syst. Sci. 2021, 130, 71. [Google Scholar] [CrossRef]
- Wapler, K. Mesocyclonic and non-mesocyclonic convective storms in Germany: Storm characteristics and life-cycle. Atmos. Res. 2021, 248, 105186. [Google Scholar] [CrossRef]
Stations | WMO Station ID | Latitude | Longitude | Altitude | Period |
---|---|---|---|---|---|
Florya | 17636 | 40.9758° | 28.7865° | 37.0 m | 1937–2022 |
Kadikoy | 17062 | 40.9883° | 29.0190° | 5.0 m | 1929–2022 |
Kilyos | 17059 | 41.2505° | 29.0384° | 38.0 m | 1951–2022 |
Sariyer | 17061 | 41.1464° | 29.0502° | 59.0 m | 1949–2022 |
Sile | 17610 | 41.1688° | 29.6007° | 83.0 m | 1940–2022 |
Station | Trend Test | Parameter | Light | Moderate | Heavy | Extreme |
---|---|---|---|---|---|---|
Florya | MK | P | 0.99 | 0.01 | 0.85 | 0.55 |
S | 5 | −707 | 52 | −165 | ||
Z | 0.02 | −2.59 | 0.19 | −0.6 | ||
Τ | 0 | −0.19 | 0.01 | −0.05 | ||
SS | Slope | 0 | −0.1 | 0 | 0 | |
MK & SS | Trend (+/−/o) | (o) | (−) | (o) | (o) | |
Kilyos | MK | P | 0.02 | 0.27 | 0.98 | 0.47 |
S | 502 | 232 | −6 | −152 | ||
Z | 2.39 | 1.1 | −0.02 | −0.72 | ||
Τ | 0.2 | 0.09 | 0 | −0.06 | ||
SS | Slope | 0.09 | 0.05 | 0 | 0 | |
MK & SS | Trend (+/−/o) | (+) | (o) | (o) | (o) | |
Sariyer | MK | P | 0.99 | 0.96 | 0.31 | 0.22 |
S | 4 | 12 | 219 | 263 | ||
Z | 0.01 | 0.05 | 1.02 | 1.23 | ||
Τ | 0.2 | 0.01 | 0.08 | 0.1 | ||
SS | Slope | 0 | 0 | 0.03 | 0.02 | |
MK & SS | Trend (+/−/o) | (o) | (o) | (o) | (o) | |
Kadikoy | MK | P | 0.01 | 0 | 0.69 | 0.58 |
S | 787 | −937 | −127 | −171 | ||
Z | 2.53 | −3.01 | −0.41 | −0.55 | ||
Τ | 0 | −0.21 | −0.03 | −0.04 | ||
SS | Slope | 0.09 | −0.1 | 0 | 0 | |
MK & SS | Trend (+/−/o) | (+) | (−) | (o) | (o) | |
Sile | MK | P | 0.01 | 0.02 | 0.43 | 0.28 |
S | 748 | −621 | 210 | 285 | ||
Z | 2.84 | −2.36 | 0.8 | 1.08 | ||
Τ | 0.21 | −0.18 | 0.06 | 0.08 | ||
SS | Slope | 0.17 | −0.11 | 0.01 | 0.02 | |
MK & SS | Trend (+/−/o) | (+) | (−) | (o) | (o) |
Station | Trend Test | Parameter | PRCPTOT | Rx1 Day | Rx5 Day | R10 mm | R20 mm | R50 mm | CDD | CWD |
---|---|---|---|---|---|---|---|---|---|---|
Florya | MK | p | 0.45 | 0.38 | 0.22 | 0.85 | 0.51 | 0.78 | 1 | 0.7 |
S | −202 | −232 | −328 | −50 | −171 | −64 | −1 | 102 | ||
Z | −0.76 | −0.88 | −1.24 | −0.19 | −0.65 | −0.29 | 0 | 0.39 | ||
τ | −0.06 | −0.07 | −0.09 | −0.01 | −0.05 | −0.03 | 0 | 0.03 | ||
SS | Slope | −0.4 | −0.05 | −0.14 | 0 | 0 | 0 | 0 | 0 | |
MK & SS | Trend (+/−/o) | (o) | (o) | (o) | (o) | (o) | (o) | (o) | (o) | |
Kilyos | MK | p | 0.34 | 0.03 | 0.07 | 0.63 | 0.74 | 0.5 | 0.84 | 0.94 |
S | 196 | 445 | 369 | 100 | −70 | 130 | −43 | −17 | ||
Z | 0.95 | 2.16 | 1.79 | 0.48 | −0.34 | 0.68 | −0.2 | −0.1 | ||
τ | 0.08 | 0.17 | 0.14 | 0.04 | −0.03 | 0.06 | −0.02 | −0 | ||
SS | Slope | 0.77 | 0.21 | 0.32 | 0 | 0 | 0 | 0 | 0 | |
MK & SS | Trend (+/−/o) | (o) | (+) | (o) | (o) | (o) | (o) | (o) | (o) | |
Sariyer | MK | p | 0.01 | 0.05 | 0.2 | 0.09 | 0.05 | 0.03 | 0.21 | 0.2 |
S | 545 | 401 | 268 | 354 | 416 | 434 | −270 | 274 | ||
Z | 2.59 | 1.91 | 1.27 | 1.69 | 1.99 | 2.2 | −1.26 | 1.29 | ||
τ | 0.21 | 0.15 | 0.1 | 0.14 | 0.17 | 0.2 | −0.1 | 0.11 | ||
SS | Slope | 2.41 | 0.21 | 0.2 | 0.05 | 0.03 | 0 | −0.07 | 0 | |
MK & SS | Trend (+/−/o) | (+) | (+) | (o) | (o) | (+) | (o) | (o) | (o) | |
Kadikoy | MK | p | 0.32 | 0.14 | 0.01 | 0.57 | 0.81 | 0.59 | 0.81 | 0.6 |
S | −310 | −459 | −772 | −179 | −76 | −146 | 76 | −156 | ||
Z | −0.99 | −1.47 | −2.48 | −0.57 | −0.24 | −0.55 | 0.24 | −0.5 | ||
τ | −0.07 | −0.1 | −0.17 | −0.04 | −0.02 | −0.05 | 0.02 | −0 | ||
SS | Slope | −0.51 | −0.08 | −0.24 | 0 | 0 | 0 | 0 | 0 | |
MK & SS | Trend (+/−/o) | (o) | (o) | (−) | (o) | (o) | (o) | (o) | (o) | |
Sile | MK | p | 0.2 | 0.88 | 0.7 | 0.08 | 0.23 | 0.61 | 0.31 | 0.23 |
S | 332 | −38 | 100 | 453 | 311 | −126 | −260 | 309 | ||
Z | 1.28 | −0.14 | 0.38 | 1.75 | 1.2 | −0.52 | −1 | 1.21 | ||
τ | 0.1 | −0.01 | 0.03 | 0.13 | 0.09 | −0.04 | −0.08 | 0.1 | ||
SS | Slope | 1.13 | −0.01 | 0.05 | 0.05 | 0.02 | 0 | −0.04 | 0 | |
MK & SS | Trend (+/−/o) | (o) | (o) | (o) | (o) | (o) | (o) | (o) | (o) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, Y.; Yavuz, V.; Temiz, C.; Lupo, A.R. Exploring Spatio-Temporal Precipitation Variations in Istanbul: Trends and Patterns from Five Stations across Two Continents. Atmosphere 2024, 15, 539. https://doi.org/10.3390/atmos15050539
Kara Y, Yavuz V, Temiz C, Lupo AR. Exploring Spatio-Temporal Precipitation Variations in Istanbul: Trends and Patterns from Five Stations across Two Continents. Atmosphere. 2024; 15(5):539. https://doi.org/10.3390/atmos15050539
Chicago/Turabian StyleKara, Yiğitalp, Veli Yavuz, Caner Temiz, and Anthony R. Lupo. 2024. "Exploring Spatio-Temporal Precipitation Variations in Istanbul: Trends and Patterns from Five Stations across Two Continents" Atmosphere 15, no. 5: 539. https://doi.org/10.3390/atmos15050539
APA StyleKara, Y., Yavuz, V., Temiz, C., & Lupo, A. R. (2024). Exploring Spatio-Temporal Precipitation Variations in Istanbul: Trends and Patterns from Five Stations across Two Continents. Atmosphere, 15(5), 539. https://doi.org/10.3390/atmos15050539