Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Monitoring of Organic Pollutants
2.2.1. Monitoring Indicators
2.2.2. Monitoring Methods
2.3. Health Risk Assessment
2.3.1. Semi-Quantitative Health Risk Assessment
2.3.2. Quantitative Health Risk Assessment
3. Results and Discussion
3.1. VOCs Concentration
3.2. Semi-Quantitative Health Risk Assessment
3.3. Quantitative Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for Europe. Air Quality Guidelines for Europe. WHO Regional Publications; European Series; WHO: Geneva, Switzerland, 1987; p. 23. [Google Scholar]
- US EPA; Oar; Indoor Environments Division. An Introduction to Indoor Air Quality: Volatile Organic Compounds (VOCs); EPA: Washington, DC, USA, 1991.
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on Human Health; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- US EPA (U.S. Environmental Protection Agency). Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-airquality#introe (accessed on 12 July 2020).
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef] [PubMed]
- Tornqvist, M.; Ehrenberg, L. On cancer risk-estimation of urban air-pollution. Environ. Health Perspect. 1994, 102, 173–182. [Google Scholar]
- IARC (International Agency for Research on Cancer). List of Classifications by Alphabetical Order. 2017. Available online: http://monographs.iarc.fr/ENG/Classification/index.php. (accessed on 8 August 2017).
- ATSDR (Agency for Toxic Substances and Disease Registry). 2017. Available online: http://www.atsdr.cdc.gov/substances/indexAZ.asp#B (accessed on 8 August 2017).
- OEHHA (Office of Environmental Health Hazard Assessment). 2017. Available online: http://oehha.ca.gov/risk/ChemicalDB/index.asp (accessed on 8 August 2017).
- Mo, Z.; Lu, S.; Shao, M. Volatile Organic Compound (VOC) Emissions and Health Risk Assessment in Paint and Coatings Industry in the Yangtze River Delta, China. Environ. Pollut. 2020, 269, 115740. [Google Scholar] [CrossRef]
- Yin, S.; Zheng, J.; Lu, Q.; Yuan, Z.; Huang, Z.; Zhong, L.; Lin, H. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China. Sci. Total Environ. 2015, 514, 426–438. [Google Scholar] [CrossRef]
- Yan, Y.; Peng, L.; Li, R.; Li, Y.; Li, L.; Bai, H. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China. Environ. Pollut. 2017, 223, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Cheng, S.; Li, G.; Wang, G.; Wang, H. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmos. Environ. 2014, 89, 358–366. [Google Scholar] [CrossRef]
- Zhong, Z.; Zheng, J.; Yuan, Z.; Gao, Z.; Ou, J.; Zheng, Z.; Li, C.; Huang, Z. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China. Sci. Total Environ. 2017, 583, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.F.; Liu, Y.; Duan, Z.; Guo, H.; Xu, S.; Wang, H.; Lu, W. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater. 2017, 327, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Shao, M.; Lu, S.; Qu, H.; Zhou, M.; Sun, J.; Gou, B. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. Sci. Total Environ. 2015, 533, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Zhang, L.; Yang, X.; Liu, J.; Zhou, P.; Li, J. Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing. J. Clean. Prod. 2019, 208, 1096–1108. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Dai, C.; Guo, J.; Zhang, X. Volatile organic compounds emission in the rubber products manufacturing processes. Environ. Res. 2022, 212, 113485. [Google Scholar] [CrossRef] [PubMed]
- Occupational Exposure Limits for Hazardous Agents in the Workplace Part 1:Chemical Hazardous Agents, National Health Commission of the People’s Republic of China. Available online: http://www.nhc.gov.cn/fzs/s7852d/201909/7abe11973e2149678e4419f36298a89a.shtml (accessed on 27 August 2019).
- Specifications of Air Sampling for Hazardous Substances Monitoring in the Workplace, National Health Commission of the People’s Republic of China. Available online: http://www.nhc.gov.cn/zwgkzt/pyl/201412/23d80783145a44b998bd0a0f122e9f87.shtml (accessed on 21 May 2004).
- Chen, W.; Zou, Y.; Mo, W.; Di, D.; Wang, B.; Wu, M.; Huang, Z.; Hu, B. Onsite Identification and Spatial Distribution of Air Pollutants Using a Drone-Based Solid-Phase Microextraction Array Coupled with Portable Gas Chromatography-Mass Spectrometry via Continuous-Airflow Sampling. Environ. Sci. Technol. 2022, 56, 17100–17107. [Google Scholar] [CrossRef]
- Guidelines for Occupational Health Risk Assessment of Chemicals in the Workplace, National Health Commission of the People’s Republic of China. Available online: http://www.nhc.gov.cn/wjw/pyl/201710/2df59f0c918d4be6bf4e62907bc89e42.shtml (accessed on 30 September 2017).
- Li, Q.; Su, G.; Li, C.; Wang, M.; Tan, L.; Gao, L.; Mingge, W.; Wang, Q. Emission profiles, ozone formation potential and health-risk assessment of volatile organic compounds in rubber footwear industries in China. J. Hazard. Mater. 2019, 375, 52–60. [Google Scholar] [CrossRef] [PubMed]
Pollutants | HR | M | F (d/week) | D (h/d) | W (h/week) | E | ER | R | Risk Level | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Refining | 2-Butanone | 3 | 0.05 | 6 | 12 | 72 | 0.05 | 1 | 2 | low risk |
ethylbenzene | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
Styrene | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
indene (chemistry) | 3 | 0.001 | 6 | 12 | 72 | 0.001 | 1 | 2 | low risk | ||
2 | Worker’s workroom | ethylbenzene | 3 | 0.02 | 6 | 12 | 72 | 0.02 | 1 | 2 | low risk |
3 | Tire bar storage room | carbon disulfide | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk |
1,2-Dichloroethylene | 4 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
hexane | 4 | 0.08 | 6 | 12 | 72 | 0.08 | 1 | 2 | low risk | ||
ethyl acetate | 2 | 0.48 | 6 | 12 | 72 | 0.48 | 1 | 1 | Negligible risk | ||
trichloroethylene | 3 | 0.22 | 6 | 12 | 72 | 0.22 | 1 | 2 | low risk | ||
toluene C6H5CH3 | 3 | 0.05 | 6 | 12 | 72 | 0.05 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.06 | 6 | 12 | 72 | 0.06 | 1 | 2 | low risk | ||
Styrene | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
indene (chemistry) | 3 | 0.005 | 6 | 12 | 72 | 0.005 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.005 | 6 | 12 | 72 | 0.005 | 1 | 2 | low risk | ||
4 | Calendering | carbon disulfide | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk |
1,2-Dichloroethylene | 4 | 0.06 | 6 | 12 | 72 | 0.05 | 1 | 2 | low risk | ||
hexane | 4 | 0.004 | 6 | 12 | 72 | 0.004 | 1 | 2 | low risk | ||
ethyl acetate | 2 | 0.07 | 6 | 12 | 72 | 0.07 | 1 | 1 | Negligible risk | ||
carbon tatrachloride | 4 | 0.02 | 6 | 12 | 72 | 0.02 | 1 | 2 | low risk | ||
trichloroethylene | 3 | 0.37 | 6 | 12 | 72 | 0.37 | 1 | 2 | low risk | ||
2-Hexanone | 3 | 0.28 | 6 | 12 | 72 | 0.28 | 1 | 2 | low risk | ||
toluene C6H5CH3 | 3 | 0.03 | 6 | 12 | 72 | 0.03 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.06 | 6 | 12 | 72 | 0.06 | 1 | 2 | low risk | ||
Styrene | 3 | 0.02 | 6 | 12 | 72 | 0.02 | 1 | 2 | low risk | ||
tetrachloroethylene | 4 | 0.29 | 6 | 12 | 72 | 0.29 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
5 | Shaping | carbon disulfide | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk |
hexane | 4 | 2.34 | 6 | 12 | 72 | 2.34 | 1 | 2 | low risk | ||
toluene C6H5CH3 | 3 | 0.12 | 6 | 12 | 72 | 0.12 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.1 | 6 | 12 | 72 | 0.1 | 1 | 2 | low risk | ||
Styrene | 3 | 0.03 | 6 | 12 | 72 | 0.03 | 1 | 2 | low risk | ||
indene (chemistry) | 3 | 0.008 | 6 | 12 | 72 | 0.008 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
6 | Vulcanizing | ethyl acetate | 2 | 0.24 | 6 | 12 | 72 | 0.24 | 1 | 1 | Negligible risk |
2-Hexanone | 3 | 0.27 | 6 | 12 | 72 | 0.27 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.009 | 6 | 12 | 72 | 0.009 | 1 | 2 | low risk | ||
7 | Vulcanizing workshop during the process of mold opening | hexane | 4 | 0.03 | 6 | 12 | 72 | 0.03 | 1 | 2 | low risk |
ethyl acetate | 2 | 0.26 | 6 | 12 | 72 | 0.26 | 1 | 1 | Negligible risk | ||
2-Hexanone | 3 | 0.27 | 6 | 12 | 72 | 0.27 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.02 | 6 | 12 | 72 | 0.02 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk |
Sampling Site | Pollutants | EC (μg/m3) | IUR (m3/μg) | Total | |||
---|---|---|---|---|---|---|---|
HQ | THQ | IR | |||||
1 | Refining | 2-Butanone | 20.88 | 0.004176 | 0.014 | ||
ethylbenzene | 5.21 | 2.5 × 10−6 [3] | 0.0051 | 1.3 × 10−5 | |||
Styrene | 5.10 | 0.0051 | |||||
2 | Worker’s workroom | ethylbenzene | 5.25 | 2.5 × 10−6 | 0.00525 | 0.00525 | 1.3 × 10−5 |
3 | Tire bar storage room | carbon disulfide | 5.65 | 0.0008 | 0.74 | ||
hexane | 30.85 | 0.044 | |||||
trichloroethylene | 89.73 | 4.1 × 10−6 | 0.0042 | 3.7 × 10−4 | |||
toluene C6H5CH3 | 20.89 | 0.004178 | |||||
ethylbenzene | 24.23 | 2.5 × 10−6 | 0.02423 | 6.1 × 10−5 | |||
Styrene | 4.62 | 0.00462 | |||||
naphthalene C10H8 | 1.98 | 0.66 | |||||
4 | Calendering | carbon disulfide | 2.85 | 0.004 | 79.988 | ||
hexane | 1.61 | 0.0023 | |||||
carbon tatrachloride | 8.27 | 0.0827 | |||||
trichloroethylene | 150.65 | 4.1 × 10−6 | 75.325 | 6.2 × 10−4 | |||
2-Hexanone | 114.50 | 0.0229 | |||||
toluene C6H5CH3 | 10.72 | 0.002144 | |||||
ethylbenzene | 23.07 | 2.5 × 10−6 | 0.02327 | 5.8 × 10−5 | |||
Styrene | 7.32 | 0.00732 | |||||
tetrachloroethylene | 120.47 | 6 × 10−6 | 3.0185 | 7.2 × 10−4 | |||
naphthalene C10H8 | 4.52 | 1.5 | |||||
5 | Shaping | carbon disulfide | 4.01 | 0.0057 | 2.76 | ||
hexane | 962.75 | 1.375357 | |||||
toluene C6H5CH3 | 50.71 | 0.010142 | |||||
ethylbenzene | 41.27 | 2.5 × 10−6 | 0.04127 | ||||
Styrene | 10.96 | 0.01096 | |||||
naphthalene C10H8 | 3.69 | 1.23 | |||||
6 | Vulcanizing | 2-Hexanone | 112.12 | 0.022424 | 0.73 | ||
ethylbenzene | 5.25 | 2.5 × 10−6 | 0.00525 | ||||
naphthalene C10H8 | 2.11 | 0.70 | |||||
7 | Vulcanizing workshop during the process of mold opening | hexane | 10.88 | 0.1554 | 1.28 | ||
2-Hexanone | 111.98 | 0.023996 | |||||
ethylbenzene | 7.55 | 2.5 × 10−6 | 0.00755 | ||||
naphthalene C10H8 | 3.27 | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Wang, Y.; Duan, L.; Xiu, G. Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China. Atmosphere 2024, 15, 458. https://doi.org/10.3390/atmos15040458
Hou S, Wang Y, Duan L, Xiu G. Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China. Atmosphere. 2024; 15(4):458. https://doi.org/10.3390/atmos15040458
Chicago/Turabian StyleHou, Songtao, Yalong Wang, Lian Duan, and Guangli Xiu. 2024. "Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China" Atmosphere 15, no. 4: 458. https://doi.org/10.3390/atmos15040458
APA StyleHou, S., Wang, Y., Duan, L., & Xiu, G. (2024). Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China. Atmosphere, 15(4), 458. https://doi.org/10.3390/atmos15040458