Diffusion-Based Continuous Real-Time Monitoring System for Total Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gas Sample Preparation
2.2. TVOC Monitoring System
2.3. TD-GC System
2.4. Combination of TVOC Monitoring System and TD-GC System
2.5. Combination of TVOC Monitoring System and a Portable VOC Detector
2.6. VOC Transport in Soil Column
3. Results and Discussion
3.1. Verification of TVOC Monitoring System
3.1.1. Precision and Accuracy
3.1.2. Responsiveness
3.2. Application to VOC Measurement through Soil Column
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gakhar, T.; Basu, S.; Hazra, A. Carbon-Metal Oxide Nanocomposites for Selective Detection of Toxic and Hazardous Volatile Organic Compounds (VOC)—A Review. Green Anal. Chem. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent Advances in VOC Elimination by Catalytic Oxidation Technology onto Various Nanoparticles Catalysts: A Critical Review. Appl. Catal. B 2021, 281, 119447. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, A.; Jia, R.; Zhu, S.; Gao, S.; Li, B.; Shi, N.; Zou, B. Emission Characteristics and Associated Assessment of Volatile Organic Compounds from Process Units in a Refinery. Environ. Pollut. 2020, 265, 115026. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Li, S.; Liu, Y.; Lu, K. Petrochemical and Industrial Sources of Volatile Organic Compounds Analyzed via Regional Wind-Driven Network in Shanghai. Atmosphere 2019, 10, 760. [Google Scholar] [CrossRef]
- Unnithan, A.; Bekele, D.N.; Chadalavada, S.; Naidu, R. Insights into Vapour Intrusion Phenomena: Current Outlook and Preferential Pathway Scenario. Sci. Total Environ. 2021, 796, 148885. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, D.; Liu, R.; Li, J.; Xu, X. Emissions and Control Assessment of Volatile Organic Compounds from a Typical Chemical Enterprise. Atmosphere 2023, 14, 206. [Google Scholar] [CrossRef]
- Yao, D.; Li, C.; Niu, Q.; Gao, W.; Yu, H.; Yan, G.; Liu, J.; Cao, Z.; Wang, S.; Wang, Y. Characteristics of Volatile Organic Compounds and Their Contribution to Secondary Organic Aerosols during the High O3 Period in a Central Industry City in China. Atmosphere 2022, 13, 1625. [Google Scholar] [CrossRef]
- Liu, H.; Wang, N.; Chen, D.; Tan, Q.; Song, D.; Huang, F. How Photochemically Consumed Volatile Organic Compounds Affect Ozone Formation: A Case Study in Chengdu, China. Atmosphere 2022, 13, 1534. [Google Scholar] [CrossRef]
- Pankow, J.F.; Thomson, N.R.; Johnson, R.L.; Baehr, A.L.; Zogorski, J.S. The Urban Atmosphere as a Non-Point Source for the Transport of MTBE and Other Volatile Organic Compounds (VOCS) to Shallow Groundwater. Environ. Sci Technol 1997, 31, 2828. [Google Scholar] [CrossRef]
- You, K.; Zhan, H. Comparisons of Diffusive and Advective Fluxes of Gas Phase Volatile Organic Compounds (VOCs) in Unsaturated Zones under Natural Conditions. Adv. Water Resour. 2013, 52, 221–231. [Google Scholar] [CrossRef]
- Kwon, S.-M.; Choi, Y.-R.; Park, M.-K.; Lee, H.-J.; Kim, G.-R.; Yoo, S.-S.; Cho, S.-J.; Shin, J.-H.; Shin, Y.-S.; Lee, C. Health Risk Assessment with Source Apportionment of Ambient Volatile Organic Compounds in Seoul by Positive Matrix Factorization. J. Environ. Health Sci. 2021, 47, 384–397. [Google Scholar] [CrossRef]
- Sharma, N.; Agarwal, K.A.; Eastwood, P.; Gupta, T.; Singh Editors, A.P. Air Pollution and Control (Energy, Environment, and Sustainability); Springer: Singapore, 2018. [Google Scholar]
- Yousefian, F.; Hassanvand, M.S.; Nodehi, R.N.; Amini, H.; Rastkari, N.; Aghaei, M.; Yunesian, M.; Yaghmaeian, K. The Concentration of BTEX Compounds and Health Risk Assessment in Municipal Solid Waste Facilities and Urban Areas. Environ. Res. 2020, 191, 110068. [Google Scholar] [CrossRef] [PubMed]
- Rooseboom, M.; Kocabas, N.A.; North, C.; Radcliffe, R.J.; Segal, L. Recommendation for an Occupational Exposure Limit for Toluene. Regul. Toxicol. Pharmacol. 2023, 141, 105387. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Chen, H.; Shi, Z.; Zhou, H. Case Report: Long Segmental Lesions of the Spinal Cord Caused by Exposure to Xylene. Front. Neurol. 2023, 14, 1121421. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Lan, H.; Zhong, J.; Ye, D.; Shaw, M.D.; Lewis, A.C. Low-Cost Photoionization Sensors as Detectors in GC × GC Systems Designed for Ambient VOC Measurements. Sci. Total Environ. 2019, 664, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Wei-Hao Li, M.; Ghosh, A.; Venkatasubramanian, A.; Sharma, R.; Huang, X.; Fan, X. High-Sensitivity Micro-Gas Chromatograph-Photoionization Detector for Trace Vapor Detection. ACS Sens. 2021, 6, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, G.; Hamid, A.; Khan, N.; Ishfaq, S.; Banzir, A.; Javed, T. Biomonitoring of Workers Exposed to Volatile Organic Compounds Associated with Different Occupations by Headspace GC-FID. J. Chem. 2020, 2020, 6956402. [Google Scholar] [CrossRef]
- Liaud, C.; Nguyen, N.T.; Nasreddine, R.; Le Calvé, S. Experimental Performances Study of a Transportable GC-PID and Two Thermo-Desorption Based Methods Coupled to FID and MS Detection to Assess BTEX Exposure at Sub-Ppb Level in Air. Talanta 2014, 127, 33–42. [Google Scholar] [CrossRef]
- Xiao, X.; Yan, B.; Fu, J.; Xiao, X. Absorption of Gaseous Toluene in Aqueous Solutions of Some Kinds of Fluorocarbon Surfactant. J. Air Waste Manag. Assoc. 2015, 65, 90–98. [Google Scholar] [CrossRef]
- de Blas, M.; Gómez, M.C.; Navazo, M.; Alonso, L.; Durana, N.; Iza, J. Estimation of Unidentified Non-Methane Hydrocarbons in Urban Air Based on Highly Correlated Compound Pairs. Atmos. Environ. 2014, 98, 629–639. [Google Scholar] [CrossRef]
- Maceira, A.; Vallecillos, L.; Borrull, F.; Marcé, R.M. New Approach to Resolve the Humidity Problem in VOC Determination in Outdoor Air Samples Using Solid Adsorbent Tubes Followed by TD-GC–MS. Sci. Total Environ. 2017, 599–600, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wu, J.; Yao, Q.; Wang, C.; Li, L.; Li, C. Research and Selection of Sorbents for Volatile Organic Compounds (VOC) Sampling Tubes. E3S Web. Conf. 2023, 441, 02008. [Google Scholar] [CrossRef]
- Marcillo, A.; Weiß, B.M.; Widdig, A.; Birkemeyer, C. Challenges of Fast Sampling of Volatiles for Thermal Desorption Gas Chromatography—Mass Spectrometry. J. Chromatogr. A 2020, 1617, 460822. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Li, J.; Zhang, Y.; Ding, K.; Geng, X.; Guan, Y. Portable Instruments for On-Site Analysis of Environmental Samples. Trends Anal. Chem. 2022, 154, 116653. [Google Scholar] [CrossRef]
- Sekiguchi, H.; Matsushita, K.; Yamashiro, S.; Sano, Y.; Seto, Y.; Okuda, T.; Sato, A. On-Site Determination of Nerve and Mustard Gases Using a Field-Portable Gas Chromatograph-Mass Spectrometer. Forensic Toxicol. 2006, 24, 17–22. [Google Scholar] [CrossRef]
- Epping, R.; Koch, M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023, 28, 1598. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Al Husseini, D.; Li, J.; Lin, Z.; Sukhishvili, S.; Coté, G.L.; Gutierrez-Osuna, R.; Lin, P.T. Detection of Volatile Organic Compounds Using Mid-Infrared Silicon Nitride Waveguide Sensors. Sci. Rep. 2022, 12, 5572. [Google Scholar] [CrossRef] [PubMed]
- Moura, P.C.; Vassilenko, V.; Ribeiro, P.A. Ion Mobility Spectrometry Towards Environmental Volatile Organic Compounds Identification and Quantification: A Comparative Overview over Infrared Spectroscopy. Emiss. Control Sci. Technol. 2023, 9, 25–46. [Google Scholar] [CrossRef]
- Bigazzi, A.Y.; Figliozzi, M.A. Roadway Determinants of Bicyclist Exposure to Volatile Organic Compounds and Carbon Monoxide. Transp. Res. Part D Transp. Environ. 2015, 41, 13–23. [Google Scholar] [CrossRef]
- Liang, Q.; Bao, X.; Sun, Q.; Zhang, Q.; Zou, X.; Huang, C.; Shen, C.; Chu, Y. Imaging VOC Distribution in Cities and Tracing VOC Emission Sources with a Novel Mobile Proton Transfer Reaction Mass Spectrometer. Environ. Pollut. 2020, 265, 114628. [Google Scholar] [CrossRef]
- Yue, R.; Chen, Z.; Liu, L.; Yin, L.; Qiu, Y.; Wang, X.; Wang, Z.; Mao, X. Combination of Steam-Enhanced Extraction and Electrical Resistance Heating for Efficient Remediation of Perchloroethylene-Contaminated Soil: Coupling Merits and Energy Consumption. Front. Environ. Sci. Eng. 2022, 16, 147. [Google Scholar] [CrossRef]
- Idris, S.A.; Robertson, C.; Morris, M.A.; Gibson, L.T. A Comparative Study of Selected Sorbents for Sampling of Aromatic VOCs from Indoor Air. Anal. Methods 2010, 2, 1803–1809. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, T.; Xu, X.; Wang, H.; Miao, C. Determination of BTEX Compounds in Solid-Liquid Mixing Paint Using the Combination of Solid Phase Extraction, Thermal Desorption and GC-FID. Chromatographia 2010, 71, 1131–1135. [Google Scholar] [CrossRef]
- Shin, M.C.; Jung, D.; Noh, H.; Yu, S.; Seo, Y.C.; Lee, B.M. Analysis of Volatile Organic Compounds in Sediments Using HS-GC/MS-Confirmation of Matrix Effects in External and Internal Standard Methods. J. Korean Soc. Water Environ. 2021, 21, 510–519. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Nayak, V.S.; Choudhary, T. V Single-Component Sorption/Diffusion of Cyclic Compounds from Their Bulk Liquid Phase in H-ZSM-5 Zeolite. Ind. Eng. Chem. Res. 1997, 36, 1812–1818. [Google Scholar] [CrossRef]
- Soo, J.C.; Lee, E.G.; LeBouf, R.F.; Kashon, M.L.; Chisholm, W.; Harper, M. Evaluation of a Portable Gas Chromatograph with Photoionization Detector under Variations of VOC Concentration, Temperature, and Relative Humidity. J. Occup. Environ. Hyg. 2018, 15, 351–360. [Google Scholar] [CrossRef]
Parameter | System | 50 ppbv | 500 ppbv | 5000 ppbv |
---|---|---|---|---|
Accuracy (%) | TD-GC | 99.10 ± 1.05 | 98.54 ± 0.02 | 102.06 ± 2.10 |
TVOC monitoring system | 94.46 ± 1.67 | 98.77 ± 0.63 | 97.89 ± 0.83 | |
Precision (%) | TD-GC | 7.38 ± 0.57 | 8.48 ± 0.68 | 1.44 ± 0.18 |
TVOC monitoring system | 7.49 ± 0.65 | 3.67 ± 0.76 | 2.12 ± 1.53 |
Parameter | System | 50 ppbv | 500 ppbv | 5000 ppbv |
---|---|---|---|---|
Accuracy (%) | TD-GC | 103.17 ± 0.09 | 102.60 ± 0.07 | 100.35 ± 0.13 |
TVOC monitoring system | 99.24 ± 0.52 | 100.96 ± 1.37 | 100.14 ± 1.64 | |
Precision (%) | TD-GC | 1.06 ± 0.40 | 0.89 ± 0.12 | 0.07 ± 0.03 |
TVOC monitoring system | 5.12 ± 2.94 | 1.91 ± 0.79 | 0.64 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Kim, I. Diffusion-Based Continuous Real-Time Monitoring System for Total Volatile Organic Compounds. Atmosphere 2024, 15, 245. https://doi.org/10.3390/atmos15030245
Hong J, Kim I. Diffusion-Based Continuous Real-Time Monitoring System for Total Volatile Organic Compounds. Atmosphere. 2024; 15(3):245. https://doi.org/10.3390/atmos15030245
Chicago/Turabian StyleHong, Jiseok, and Ijung Kim. 2024. "Diffusion-Based Continuous Real-Time Monitoring System for Total Volatile Organic Compounds" Atmosphere 15, no. 3: 245. https://doi.org/10.3390/atmos15030245
APA StyleHong, J., & Kim, I. (2024). Diffusion-Based Continuous Real-Time Monitoring System for Total Volatile Organic Compounds. Atmosphere, 15(3), 245. https://doi.org/10.3390/atmos15030245