Analysis of Three Dimethyl Sulfides in Freshwater Lakes Using Headspace Solid-Phase Microextraction-Gas Chromatography with Flame Photometric Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Standard Solutions and Calibration
2.2.1. Preparation of Stock Solution
2.2.2. Preparation of the Working Solutions
2.3. Extraction Preparation
2.4. Instrumentation
2.5. Analysis of Water Samples
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Three Dimethyl Sulfides
3.2. Method Development and Optimization
3.2.1. Selection of Extraction Fiber
3.2.2. Optimization of Ion Concentration
3.2.3. Optimization of Extraction Time
3.2.4. Optimization of Extraction Temperature
3.2.5. Orthogonal Optimization
3.3. The Validation of the Methods
3.3.1. Linearity
3.3.2. Detection and Quantitation Limits
3.3.3. Accuracy and Precision
3.4. Analysis of Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Xu, D.; Bai, L.; Zhu, B.; Huang, L.; Jiang, H. Effects of accumulated cyanobacterial bloom biomass contents on the characteristics of surface fluid sediments in a eutrophic shallow lake. J. Environ. Manag. 2022, 308, 114664. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, C.; Sun, P.; Ni, T. Response of cyanobacterial bloom risk to nitrogen and phosphorus concentrations in large shallow lakes determined through geographical detector: A case study of Taihu Lake, China. Sci. Total Environ. 2022, 816, 151617. [Google Scholar] [CrossRef] [PubMed]
- Rabalais, N.N.; Díaz, R.J.; Levin, L.A.; Turner, R.E.; Gilbert, D.; Zhang, J. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 2010, 7, 585–619. [Google Scholar] [CrossRef]
- Carmichael, W. Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. Int. J. 2001, 7, 1393–1407. [Google Scholar] [CrossRef]
- Qian, R.; Wang, X.; Gao, J.; Yang, H.; Han, J.; Zhang, Q.; Huang, J. A modelling framework to track phosphorus sources of the drinking water intakes in a large eutrophic lake. J. Hydrol. 2022, 607, 127566. [Google Scholar] [CrossRef]
- Wang, J.; Chu, Y.-X.; Tian, G.; He, R. Estimation of sulfur fate and contribution to VSC emissions from lakes during algae decay. Sci. Total Environ. 2023, 856, 159153. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Peng, J. The magnitude and drivers of harmful algal blooms in China’s lakes and reservoirs: A national-scale characterization. Water Res. 2020, 181, 115902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Chen, C.; Ding, J.Q.; Hou, A.; Li, Y.; Niu, Z.B.; Laws, E.A. The 2007 water crisis in Wuxi, China: Analysis of the origin. J. Hazard. Mater. 2010, 182, 130–135. [Google Scholar] [CrossRef]
- Reese, B.; Anderson, M. Dimethyl sulfide production in a saline eutrophic lake, Salton Sea, California. Limnol. Oceanogr. 2009, 54, 250–261. [Google Scholar] [CrossRef]
- Hu, H.; Mylon, S.; Benoit, G. Volatile organic sulfur compounds in a stratified lake. Chemosphere 2007, 67, 911–919. [Google Scholar] [CrossRef]
- Li, Y.; Gong, X.; Zhao, Z.; Shen, Q.; Zhang, L. Distribution and Release of Volatile Organic Sulfur Compounds in Yangcheng Lake. Water 2022, 14, 1199. [Google Scholar] [CrossRef]
- Olsson, F.; Mackay, E.B.; Barker, P.; Davies, S.; Hall, R.; Spears, B.; Exley, G.; Thackeray, S.J.; Jones, I.D. Can reductions in water residence time be used to disrupt seasonal stratification and control internal loading in a eutrophic monomictic lake? J. Environ. Manag. 2022, 304, 114169. [Google Scholar] [CrossRef] [PubMed]
- Free, G.; Bresciani, M.; Pinardi, M.; Peters, S.; Laanen, M.; Padula, R.; Cingolani, A.; Charavgis, F.; Giardino, C. Shorter blooms expected with longer warm periods under climate change: An example from a shallow meso-eutrophic Mediterranean lake. Hydrobiologia 2022, 849, 3963–3978. [Google Scholar] [CrossRef]
- Kincaid, D.W.; Adair, E.C.; Joung, D.; Stockwell, J.D.; Schroth, A.W. Ice cover and thaw events influence nitrogen partitioning and concentration in two shallow eutrophic lakes. Biogeochemistry 2021, 157, 15–29. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Hou, X.; Zhang, X.; Yin, H.; Zhang, M.; Zheng, C. Trapping and preconcentration of volatile organic sulfur compounds in water samples by portable and battery-powered trapping device prior to gas chromatography-sulfur chemiluminescence determination. J. Chromatogr. A 2020, 1619, 460947. [Google Scholar] [CrossRef]
- Olivera, C.; Tondo, M.L.; Girardi, V.; Fattobene, L.; Herrero, M.S.; Pérez, L.M.; Salvatierra, L.M. Early-stage response in anaerobic bioreactors due to high sulfate loads: Hydrogen sulfide yield and other organic volatile sulfur compounds as a sign of microbial community modifications. Bioresour. Technol. 2022, 350, 126947. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, Q.; Jiang, X.; Dong, Y.; Hu, Z.; Shi, L.; Zhao, R. Multi-dimension analysis of volatile sulfur compound emissions from an urban wastewater treatment plant. J. Environ. Manag. 2023, 345, 118632. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Fan, C.; Shang, J.; Deng, J.; Yin, H. Headspace solid-phase microextraction for the determination of volatile sulfur compounds in odorous hyper-eutrophic freshwater lakes using gas chromatography with flame photometric detection. Microchem. J. 2012, 104, 26–32. [Google Scholar] [CrossRef]
- Scarlata, C.J.; Ebeler, S.E. Headspace solid-phase microextraction for the analysis of dimethyl sulfide in beer. J. Agric. Food Chem. 1999, 47, 2505–2508. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, K.; Bai, M.; Cheng, C.; Yu, Y.; Zhou, X. Determination of 2-methylisoborneol and geosmin in drinking water using headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry. Chin. J. Chromatogr. 2015, 33, 1287–1293. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, B.; Liu, M.; Nie, Y. Spatial and Temporal Variations of Taste and Odor Compounds in Surface Water, Overlying Water and Sediment of the Western Lake Chaohu, China. Bull. Environ. Contam. Toxicol. 2016, 96, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Franzmann, P.D.; Heitz, A.; Zappia, L.R.; Wajon, J.E.; Xanthis, K. The formation of malodorous dimethyl oligosulphides in treated groundwater: The role of biofilms and potential precursors. Water Res. 2001, 35, 1730–1738. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Chen, Q.; Wang, C.; Chen, D.; Zhang, L.; Wu, J.; Zhou, Q.; Wu, Z. Determination of four major odor compounds in black and odorous water by headspace solid phase microextraction combined with gas chromatography-mass spectrometry. Environ. Chem. 2019, 38, 2789–2796. [Google Scholar]
- Sun, J.; Wang, R.; Yin, D. Simultaneous determination of nine taste and odor compounds in source water of Chinese cities by headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry. Environ. Chem. 2016, 35, 7. [Google Scholar]
- Chen, X.; Luo, Q.; Yuan, S.; Wei, Z.; Song, H.; Wang, D.; Wang, Z. Simultaneous determination of ten taste and odor compounds in drinking water by solid-phase microextraction combined with gas chromatography-mass spectrometry. J. Environ. Sci. 2013, 25, 2313–2323. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.; Köster, O.; Schildknecht, A.; von Gunten, U. Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters. Water Res. 2009, 43, 2191–2200. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Shi, C.; Ji, M.; Xu, X.; Zhang, Z.; Ma, J.; Wang, G. Taste and odor compounds associated with aquatic plants in Taihu Lake: Distribution and producing potential. Environ. Sci. Pollut. Res. 2019, 26, 34510–34520. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Peng, S.; Xia, W.; Zheng, H.; Chen, X.; Yin, L. Analysis of Five Earthy-Musty Odorants in Environmental Water by, H.S.-S.P.M.E./.G.C.-M.S. Int. J. Anal. Chem. 2014, 2014, 697260. [Google Scholar] [CrossRef] [PubMed]
- Godayol, A.; Alonso, M.; Besalú, E.; Sanchez, J.M.; Anticó, E. Odour-causing organic compounds in wastewater treatment plants: Evaluation of headspace solid-phase microextraction as a concentration technique. J. Chromatogr. A 2011, 1218, 4863–4868. [Google Scholar] [CrossRef]
- Hou, X.; Wang, Y.; Liu, T.; Du, M.; Gao, Y.; Jiang, W.; Li, F.; Dong, S.; Li, W.; Jiang, Z. Effects of feeding activities by four common economic bivalves on the production of dimethyl sulfur compounds from isochrysis galbana. Prog. Fish. Sci. 2021, 42, 124–131. [Google Scholar]
- Steinke, M.; Hodapp, B.; Subhan, R.; Bell, T.G.; Martin-Creuzburg, D. Flux of the biogenic volatiles isoprene and dimethyl sulfide from an oligotrophic lake. Sci. Rep. 2018, 8, 630. [Google Scholar] [CrossRef] [PubMed]
- Sela-Adler, M.; Said-Ahmad, W.; Sivan, O.; Eckert, W.; Kiene, R.P.; Amrani, A. Isotopic evidence for the origin of dimethylsulfide and dimethylsulfoniopropionate-like compounds in a warm, monomictic freshwater lake. Environ. Chem. 2016, 13, 340–351. [Google Scholar] [CrossRef]
- Shen, Q.; Zhou, Q.; Shang, J.; Shao, S.; Zhang, L.; Fan, C. Beyond hypoxia: Occcurrence and characteristics of black blooms due to the decomposition of the submerged plant Potamogeton crispus in a shallow lake. J. Environ. Sci. 2014, 26, 281–288. [Google Scholar] [CrossRef] [PubMed]
Properties | Dimethyl Monosulfide | Dimethyl Disulfide | Dimethyl Trisulfide |
---|---|---|---|
Chemical formula | C2H6S | C2H6S2 | C2H6S3 |
Structural formula (chemistry) | |||
Molar mass/(g·mol)−1 | 62.13 | 94.2 | 126.26 |
States of matter | colorless liquid | colorless/yellow liquid | colorless liquids |
Odors | Decaying vegetation, septic, swampy | ||
Density/(g·cm)−3 | 0.846 | 1.063 | 1.202 |
Melting point/(°C) | −98 | −85 | −68.05 |
Boiling point/(°C) | 35~41 | 110 | 170 |
Olfactory threshold/(ng/L) | 0.3~1000 [8] | 200~5000 [21] | 10 [22] |
Experimental Group | Ion Concentration/% | Extraction Time/min | Extraction Temperature/°C |
---|---|---|---|
1 | 16 | 77 | 50 |
2 | 16 | 87 | 55 |
3 | 16 | 97 | 60 |
4 | 18 | 77 | 55 |
5 | 18 | 87 | 60 |
6 | 18 | 97 | 50 |
7 | 20 | 77 | 60 |
8 | 20 | 87 | 50 |
9 | 20 | 97 | 55 |
Dimethyl Sulfides | Linear Range/(ng/L) | Regression Equation | Coefficient of Determination R2 | p-Value |
---|---|---|---|---|
DMS | 100~10,000 | y = 1.6503x − 3.0502 | 0.9967 | <0.001 |
DMDS | 10~1000 | y = 2.0681x − 0.5219 | 0.9907 | <0.001 |
DMTS | 5~1000 | y = 2.3945x − 3.1269 | 0.9994 | <0.001 |
Dimethyl Sulfides | Lower Limit of Detection LOD/(ng/L) | Lower Limit of Quantification LOQ/(ng/L) | Based on Concentration ng/L |
---|---|---|---|
DMS | 29 | 95 | 200 |
DMDS | 1.2 | 4.1 | 100 |
DMTS | 5.0 | 17 | 100 |
Dimethyl Sulfides | Standard Concentration/(ng/L) | Detected Concentration/(ng/L) | Spiked Recovery/% | Relative Standard Deviation RSD/% |
---|---|---|---|---|
DMS | 100 | 99.1 | 99.07 | 5.18 |
500 | 486.1 | 97.22 | 5.94 | |
DMDS | 50 | 48.5 | 96.93 | 3.08 |
100 | 94.2 | 94.22 | 5.13 | |
500 | 496.7 | 99.34 | 6.25 | |
DMTS | 50 | 46.7 | 93.39 | 4.79 |
100 | 91.2 | 91.17 | 5.47 | |
500 | 496.3 | 99.25 | 2.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Q.; Wu, A.; Lu, J.; Jiang, L.; Shen, Q. Analysis of Three Dimethyl Sulfides in Freshwater Lakes Using Headspace Solid-Phase Microextraction-Gas Chromatography with Flame Photometric Detection. Atmosphere 2024, 15, 484. https://doi.org/10.3390/atmos15040484
Bao Q, Wu A, Lu J, Jiang L, Shen Q. Analysis of Three Dimethyl Sulfides in Freshwater Lakes Using Headspace Solid-Phase Microextraction-Gas Chromatography with Flame Photometric Detection. Atmosphere. 2024; 15(4):484. https://doi.org/10.3390/atmos15040484
Chicago/Turabian StyleBao, Qibei, Anjie Wu, Jin Lu, Lingli Jiang, and Qiushi Shen. 2024. "Analysis of Three Dimethyl Sulfides in Freshwater Lakes Using Headspace Solid-Phase Microextraction-Gas Chromatography with Flame Photometric Detection" Atmosphere 15, no. 4: 484. https://doi.org/10.3390/atmos15040484
APA StyleBao, Q., Wu, A., Lu, J., Jiang, L., & Shen, Q. (2024). Analysis of Three Dimethyl Sulfides in Freshwater Lakes Using Headspace Solid-Phase Microextraction-Gas Chromatography with Flame Photometric Detection. Atmosphere, 15(4), 484. https://doi.org/10.3390/atmos15040484