Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Monitoring of Organic Pollutants
2.2.1. Monitoring Indicators
2.2.2. Monitoring Methods
2.3. Health Risk Assessment
2.3.1. Semi-Quantitative Health Risk Assessment
2.3.2. Quantitative Health Risk Assessment
3. Results and Discussion
3.1. VOCs Concentration
3.2. Semi-Quantitative Health Risk Assessment
3.3. Quantitative Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for Europe. Air Quality Guidelines for Europe. WHO Regional Publications; European Series; WHO: Geneva, Switzerland, 1987; p. 23. [Google Scholar]
- US EPA; Oar; Indoor Environments Division. An Introduction to Indoor Air Quality: Volatile Organic Compounds (VOCs); EPA: Washington, DC, USA, 1991.
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on Human Health; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- US EPA (U.S. Environmental Protection Agency). Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-airquality#introe (accessed on 12 July 2020).
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef] [PubMed]
- Tornqvist, M.; Ehrenberg, L. On cancer risk-estimation of urban air-pollution. Environ. Health Perspect. 1994, 102, 173–182. [Google Scholar]
- IARC (International Agency for Research on Cancer). List of Classifications by Alphabetical Order. 2017. Available online: http://monographs.iarc.fr/ENG/Classification/index.php. (accessed on 8 August 2017).
- ATSDR (Agency for Toxic Substances and Disease Registry). 2017. Available online: http://www.atsdr.cdc.gov/substances/indexAZ.asp#B (accessed on 8 August 2017).
- OEHHA (Office of Environmental Health Hazard Assessment). 2017. Available online: http://oehha.ca.gov/risk/ChemicalDB/index.asp (accessed on 8 August 2017).
- Mo, Z.; Lu, S.; Shao, M. Volatile Organic Compound (VOC) Emissions and Health Risk Assessment in Paint and Coatings Industry in the Yangtze River Delta, China. Environ. Pollut. 2020, 269, 115740. [Google Scholar] [CrossRef]
- Yin, S.; Zheng, J.; Lu, Q.; Yuan, Z.; Huang, Z.; Zhong, L.; Lin, H. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China. Sci. Total Environ. 2015, 514, 426–438. [Google Scholar] [CrossRef]
- Yan, Y.; Peng, L.; Li, R.; Li, Y.; Li, L.; Bai, H. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China. Environ. Pollut. 2017, 223, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Cheng, S.; Li, G.; Wang, G.; Wang, H. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmos. Environ. 2014, 89, 358–366. [Google Scholar] [CrossRef]
- Zhong, Z.; Zheng, J.; Yuan, Z.; Gao, Z.; Ou, J.; Zheng, Z.; Li, C.; Huang, Z. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China. Sci. Total Environ. 2017, 583, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.F.; Liu, Y.; Duan, Z.; Guo, H.; Xu, S.; Wang, H.; Lu, W. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater. 2017, 327, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Shao, M.; Lu, S.; Qu, H.; Zhou, M.; Sun, J.; Gou, B. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. Sci. Total Environ. 2015, 533, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Zhang, L.; Yang, X.; Liu, J.; Zhou, P.; Li, J. Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing. J. Clean. Prod. 2019, 208, 1096–1108. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Dai, C.; Guo, J.; Zhang, X. Volatile organic compounds emission in the rubber products manufacturing processes. Environ. Res. 2022, 212, 113485. [Google Scholar] [CrossRef] [PubMed]
- Occupational Exposure Limits for Hazardous Agents in the Workplace Part 1:Chemical Hazardous Agents, National Health Commission of the People’s Republic of China. Available online: http://www.nhc.gov.cn/fzs/s7852d/201909/7abe11973e2149678e4419f36298a89a.shtml (accessed on 27 August 2019).
- Specifications of Air Sampling for Hazardous Substances Monitoring in the Workplace, National Health Commission of the People’s Republic of China. Available online: http://www.nhc.gov.cn/zwgkzt/pyl/201412/23d80783145a44b998bd0a0f122e9f87.shtml (accessed on 21 May 2004).
- Chen, W.; Zou, Y.; Mo, W.; Di, D.; Wang, B.; Wu, M.; Huang, Z.; Hu, B. Onsite Identification and Spatial Distribution of Air Pollutants Using a Drone-Based Solid-Phase Microextraction Array Coupled with Portable Gas Chromatography-Mass Spectrometry via Continuous-Airflow Sampling. Environ. Sci. Technol. 2022, 56, 17100–17107. [Google Scholar] [CrossRef]
- Guidelines for Occupational Health Risk Assessment of Chemicals in the Workplace, National Health Commission of the People’s Republic of China. Available online: http://www.nhc.gov.cn/wjw/pyl/201710/2df59f0c918d4be6bf4e62907bc89e42.shtml (accessed on 30 September 2017).
- Li, Q.; Su, G.; Li, C.; Wang, M.; Tan, L.; Gao, L.; Mingge, W.; Wang, Q. Emission profiles, ozone formation potential and health-risk assessment of volatile organic compounds in rubber footwear industries in China. J. Hazard. Mater. 2019, 375, 52–60. [Google Scholar] [CrossRef] [PubMed]
Pollutants | HR | M | F (d/week) | D (h/d) | W (h/week) | E | ER | R | Risk Level | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Refining | 2-Butanone | 3 | 0.05 | 6 | 12 | 72 | 0.05 | 1 | 2 | low risk |
ethylbenzene | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
Styrene | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
indene (chemistry) | 3 | 0.001 | 6 | 12 | 72 | 0.001 | 1 | 2 | low risk | ||
2 | Worker’s workroom | ethylbenzene | 3 | 0.02 | 6 | 12 | 72 | 0.02 | 1 | 2 | low risk |
3 | Tire bar storage room | carbon disulfide | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk |
1,2-Dichloroethylene | 4 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
hexane | 4 | 0.08 | 6 | 12 | 72 | 0.08 | 1 | 2 | low risk | ||
ethyl acetate | 2 | 0.48 | 6 | 12 | 72 | 0.48 | 1 | 1 | Negligible risk | ||
trichloroethylene | 3 | 0.22 | 6 | 12 | 72 | 0.22 | 1 | 2 | low risk | ||
toluene C6H5CH3 | 3 | 0.05 | 6 | 12 | 72 | 0.05 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.06 | 6 | 12 | 72 | 0.06 | 1 | 2 | low risk | ||
Styrene | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
indene (chemistry) | 3 | 0.005 | 6 | 12 | 72 | 0.005 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.005 | 6 | 12 | 72 | 0.005 | 1 | 2 | low risk | ||
4 | Calendering | carbon disulfide | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk |
1,2-Dichloroethylene | 4 | 0.06 | 6 | 12 | 72 | 0.05 | 1 | 2 | low risk | ||
hexane | 4 | 0.004 | 6 | 12 | 72 | 0.004 | 1 | 2 | low risk | ||
ethyl acetate | 2 | 0.07 | 6 | 12 | 72 | 0.07 | 1 | 1 | Negligible risk | ||
carbon tatrachloride | 4 | 0.02 | 6 | 12 | 72 | 0.02 | 1 | 2 | low risk | ||
trichloroethylene | 3 | 0.37 | 6 | 12 | 72 | 0.37 | 1 | 2 | low risk | ||
2-Hexanone | 3 | 0.28 | 6 | 12 | 72 | 0.28 | 1 | 2 | low risk | ||
toluene C6H5CH3 | 3 | 0.03 | 6 | 12 | 72 | 0.03 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.06 | 6 | 12 | 72 | 0.06 | 1 | 2 | low risk | ||
Styrene | 3 | 0.02 | 6 | 12 | 72 | 0.02 | 1 | 2 | low risk | ||
tetrachloroethylene | 4 | 0.29 | 6 | 12 | 72 | 0.29 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
5 | Shaping | carbon disulfide | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk |
hexane | 4 | 2.34 | 6 | 12 | 72 | 2.34 | 1 | 2 | low risk | ||
toluene C6H5CH3 | 3 | 0.12 | 6 | 12 | 72 | 0.12 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.1 | 6 | 12 | 72 | 0.1 | 1 | 2 | low risk | ||
Styrene | 3 | 0.03 | 6 | 12 | 72 | 0.03 | 1 | 2 | low risk | ||
indene (chemistry) | 3 | 0.008 | 6 | 12 | 72 | 0.008 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
6 | Vulcanizing | ethyl acetate | 2 | 0.24 | 6 | 12 | 72 | 0.24 | 1 | 1 | Negligible risk |
2-Hexanone | 3 | 0.27 | 6 | 12 | 72 | 0.27 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.009 | 6 | 12 | 72 | 0.009 | 1 | 2 | low risk | ||
7 | Vulcanizing workshop during the process of mold opening | hexane | 4 | 0.03 | 6 | 12 | 72 | 0.03 | 1 | 2 | low risk |
ethyl acetate | 2 | 0.26 | 6 | 12 | 72 | 0.26 | 1 | 1 | Negligible risk | ||
2-Hexanone | 3 | 0.27 | 6 | 12 | 72 | 0.27 | 1 | 2 | low risk | ||
ethylbenzene | 3 | 0.02 | 6 | 12 | 72 | 0.02 | 1 | 2 | low risk | ||
naphthalene C10H8 | 3 | 0.01 | 6 | 12 | 72 | 0.01 | 1 | 2 | low risk |
Sampling Site | Pollutants | EC (μg/m3) | IUR (m3/μg) | Total | |||
---|---|---|---|---|---|---|---|
HQ | THQ | IR | |||||
1 | Refining | 2-Butanone | 20.88 | 0.004176 | 0.014 | ||
ethylbenzene | 5.21 | 2.5 × 10−6 [3] | 0.0051 | 1.3 × 10−5 | |||
Styrene | 5.10 | 0.0051 | |||||
2 | Worker’s workroom | ethylbenzene | 5.25 | 2.5 × 10−6 | 0.00525 | 0.00525 | 1.3 × 10−5 |
3 | Tire bar storage room | carbon disulfide | 5.65 | 0.0008 | 0.74 | ||
hexane | 30.85 | 0.044 | |||||
trichloroethylene | 89.73 | 4.1 × 10−6 | 0.0042 | 3.7 × 10−4 | |||
toluene C6H5CH3 | 20.89 | 0.004178 | |||||
ethylbenzene | 24.23 | 2.5 × 10−6 | 0.02423 | 6.1 × 10−5 | |||
Styrene | 4.62 | 0.00462 | |||||
naphthalene C10H8 | 1.98 | 0.66 | |||||
4 | Calendering | carbon disulfide | 2.85 | 0.004 | 79.988 | ||
hexane | 1.61 | 0.0023 | |||||
carbon tatrachloride | 8.27 | 0.0827 | |||||
trichloroethylene | 150.65 | 4.1 × 10−6 | 75.325 | 6.2 × 10−4 | |||
2-Hexanone | 114.50 | 0.0229 | |||||
toluene C6H5CH3 | 10.72 | 0.002144 | |||||
ethylbenzene | 23.07 | 2.5 × 10−6 | 0.02327 | 5.8 × 10−5 | |||
Styrene | 7.32 | 0.00732 | |||||
tetrachloroethylene | 120.47 | 6 × 10−6 | 3.0185 | 7.2 × 10−4 | |||
naphthalene C10H8 | 4.52 | 1.5 | |||||
5 | Shaping | carbon disulfide | 4.01 | 0.0057 | 2.76 | ||
hexane | 962.75 | 1.375357 | |||||
toluene C6H5CH3 | 50.71 | 0.010142 | |||||
ethylbenzene | 41.27 | 2.5 × 10−6 | 0.04127 | ||||
Styrene | 10.96 | 0.01096 | |||||
naphthalene C10H8 | 3.69 | 1.23 | |||||
6 | Vulcanizing | 2-Hexanone | 112.12 | 0.022424 | 0.73 | ||
ethylbenzene | 5.25 | 2.5 × 10−6 | 0.00525 | ||||
naphthalene C10H8 | 2.11 | 0.70 | |||||
7 | Vulcanizing workshop during the process of mold opening | hexane | 10.88 | 0.1554 | 1.28 | ||
2-Hexanone | 111.98 | 0.023996 | |||||
ethylbenzene | 7.55 | 2.5 × 10−6 | 0.00755 | ||||
naphthalene C10H8 | 3.27 | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Wang, Y.; Duan, L.; Xiu, G. Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China. Atmosphere 2024, 15, 458. https://doi.org/10.3390/atmos15040458
Hou S, Wang Y, Duan L, Xiu G. Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China. Atmosphere. 2024; 15(4):458. https://doi.org/10.3390/atmos15040458
Chicago/Turabian StyleHou, Songtao, Yalong Wang, Lian Duan, and Guangli Xiu. 2024. "Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China" Atmosphere 15, no. 4: 458. https://doi.org/10.3390/atmos15040458
APA StyleHou, S., Wang, Y., Duan, L., & Xiu, G. (2024). Health Risk Assessment from Exposure to Ambient Volatile Organic Compounds (VOCs) at a Truck Tire Factory in the Yangtze River Delta, China. Atmosphere, 15(4), 458. https://doi.org/10.3390/atmos15040458