Comparison of Air Pollutants during the Two COVID-19 Lockdown Periods in Winter 2019 and Spring 2022 in Shanghai, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Data for the Air Quality Index and Six Air Pollutants
2.2.2. Nighttime Light Brightness
2.2.3. Seasonal Meteorological Data
2.3. Methods
2.3.1. Estimation of Human-Related Emission Reduction of Air Pollution during Lockdown Periods
2.3.2. The Statistical Methods in Analysis
2.3.3. Specific Period Setting
3. Results
3.1. Differences in Spatiotemporal Characteristics of Air Pollutants during COVID-19 Lockdown Periods in Winter and Spring
3.2. Quantitative Assessment of the Impact of Human Activities on Air Pollution during the COVID-19 Lockdown Period
3.2.1. Nighttime Light Brightness and Air Pollutants during the Two AF Periods
3.2.2. Estimation of Human-Related Emission Reduction during the Two Lockdown Periods
3.3. Impact of Seasonal Differences on Air Pollution during the Two COVID-19 Lockdown Periods
3.4. Interplay of Air Pollutants during the Two COVID-19 Lockdown Periods
4. Discussions and Conclusions
4.1. Discussions
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, T.; Du, H.; Lin, Z.; Chen, X.; Chen, Z.; Tu, Q. Green recovery or pollution rebound? Evidence from air pollution of China in the post-COVID-19 era. J. Environ. Manag. 2022, 324, 116360. [Google Scholar] [CrossRef] [PubMed]
- Loxham, M.; Nieuwenhuijsen, M.J. Health effects of particulate matter air pollution in underground railway systems—A critical review of the evidence. Part. Fibre Toxicol. 2019, 16, 116–360. [Google Scholar] [CrossRef]
- Huang, H.; Ho, K.F.; Lee, S.C.; Tsang, P.K.; Ho, S.S.H.; Zou, C.W.; Zou, S.C.; Cao, J.J.; Xu, H.M. Characteristics of carbonaceous aerosol in PM2.5: Pearl Delta River Region, China. Atmos. Res. 2012, 104–105, 227–236. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Y.; Zhao, B. The impact of the “Air pollution prevention and control action plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; He, S.; Zhou, H. Spatio-temporal characteristics and convergence trends of PM2.5 pollution: A case study of cities of air pollution transmission channel in Beijing-Tianjin-Hebei Region, China. J. Clean. Prod. 2020, 256, 120–631. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, J.; Wang, S. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China’s cities using spatial regression and the geographical detector technique. Sci. Total Environ. 2018, 619, 436–445. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Freedman, D.O. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (COVID-19) outbreak. J. Travel Med. 2020, 27, 10–16. [Google Scholar] [CrossRef]
- Hashim, B.M.; AI-Naseri, S.K.; AI-Maliki, A. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; De Marco, A.; Agathokleous, E. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139–542. [Google Scholar] [CrossRef]
- Wang, H.; Miao, Q.; Shen, L.; Yang, Q.; Wu, Y.; Wei, H.; Yin, Y.; Zhao, T.; Zhu, B.; Lu, W. Characterization of the aerosol chemical composition during the COVID-19 lockdown period in Suzhou in the Yangtze River Delta, China. J. Environ. Sci. 2021, 102, 110–122. [Google Scholar] [CrossRef]
- Lipsitt, J.; Chan-Golston, A.M.; Liu, J.; Su, J.; Zhu, Y.; Jerrett, M. Spatial analysis of COVID-19 and traffic-related air pollution in Los Angeles. Environ. Int. 2021, 153, 106531. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, N.C.; Li, L.J.; Wu, G.F.; Tao, J.; Zhao, W.J. Analysis of the changes of air pollutants in Beijing, Tianjin and Hebei during the COVID-19 epidemic and the influencing factors. Environ. Sci. 2021, 42, 1205–1214. [Google Scholar] [CrossRef]
- Ghosh, T.; Elvidge, C.D.; Hsu, F. The Dimming of Lights in India during the COVID-19 Pandemic. Remote Sens. 2020, 12, 3289. [Google Scholar] [CrossRef]
- Shao, Z.; Tang, Y.; Huang, X.; Li, D. Monitoring Work Resumption of Wuhan in the COVID-19 Epidemic Using Daily Nighttime Light. Photogramm. Eng. Remote Sens. 2021, 87, 195–204. [Google Scholar] [CrossRef]
- Dong, J.B.; Chen, X.L.; Cai, X.B. Analysis of the temporal and spatial variation of atmospheric quality from 2015 to 2019 based on China atmospheric environment monitoring station. J. Geogr. Inf. Sci. 2020, 22, 13. [Google Scholar] [CrossRef]
- Bauer, R.; Speringer, M.; Frühwirt, P.; Seidl, R.; Trautinger, F. Assessing excess mortality in Vienna and Austria after the first year of the COVID-19 pandemic. Vienna Yearb. Popul. Res. 2022, 20, 8. [Google Scholar] [CrossRef]
- Fishman, J.; Crutzen, P.J. The origin of ozone in the troposphere. Nature 1978, 274, 855–858. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M. Air Quality Changes in Shanghai, China, and the Surrounding Urban Agglomeration during the COVID-19 Lockdown. J. Geovis. Spat. Anal. 2020, 4, 22. [Google Scholar] [CrossRef]
- Aimac, N.; Hladnik, M.; Zaletel-Kragelj, L. The impact of temperature on tropospheric ozone in the Nova Gorica region. J. Public Health 2011, 50, 121–130. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, X.; Feng, J.; Fan, Q.; Zhang, Y.; Yang, X. Influence of ship emissions on urban air quality: A comprehensive study using highly time-resolved online measurements and numerical simulation in Shanghai. Environ. Sci. Technol. 2017, 51, 202–211. [Google Scholar] [CrossRef]
- Tong, S.; Kong, L.; Yang, K. Characteristics of air pollution episodes influenced by biomass burning pollution in Shanghai, China. Atmos. Environ. 2020, 238, 117756. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Li, M.; Tan, J. Concentration prediction and spatial origin analysis of criteria air pollutants in Shanghai. Environ. Pollut. 2023, 12, 121535. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, C.H.; Huang, C.; Streets, D.G.; Huang, H.Y.; Zhang, G.F.; Wang, Y.J.; Jang, C.J.; Wang, H.L.; Chen, Y.R.; et al. Air quality and emissions in the Yangtze River Delta, China. Atmos. Meas. Tech. 2011, 11, 1621–1639. [Google Scholar] [CrossRef]
- Li, X.; Wu, C.; Meadows, M. Factors underlying spatiotemporal variations in atmospheric PM2.5 concentrations in Zhejiang Province, China. Remote Sens. 2021, 13, 3011. [Google Scholar] [CrossRef]
- Borhani, F.; Majid, S.; Amir, H.; Rashidi, Y.; Noorpoor, A.; Maddah, S. Optimization Models for Reducing the Air Pollutants Emission in the Production of Insulation Bituminous. Environ. Energy Econ. Res. 2023, 7, 1–14. [Google Scholar] [CrossRef]
- Karl, T.; Lamprecht, C.; Graus, M. High urban NOx triggers a substantial chemical downward flux of ozone. Sci. Adv. 2023, 9, 2365. [Google Scholar] [CrossRef] [PubMed]
- Dhumad, S.Z.; Jasim, O.Z.; Hamed, N.H. The evaluation of carbon monoxide emissions using regression analysis and GIS techniques. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012041. [Google Scholar] [CrossRef]
- Xian, T.; Li, Z.; Wei, J. Changes in Air Pollution Following the COVID-19 Epidemic in Northern China: The Role of Meteorology. Front. Environ. Sci. 2021, 41, 886. [Google Scholar] [CrossRef]
- Lonati, G.; Riva, F. Regional Scale Impact of the COVID-19 Lockdown on Air Quality: Gaseous Pollutants in the Po Valley, Northern Italy. Atmosphere 2021, 12, 264. [Google Scholar] [CrossRef]
- Khuzestani, R.P.; Taheri, A.; Yeganeh, B. Long-range transport of sulfur dioxide emissions from external sources to Tehran. Urban Clim. 2023, 49, 101445. [Google Scholar] [CrossRef]
- Wang, H.; Huang, C.; Tao, W. Seasonality and reduced nitric oxide titration dominated ozone increase during COVID-19 lockdown in eastern China. NPJ Clim. Atmos. 2022, 5, 24. [Google Scholar] [CrossRef]
- Ren, C.; Yu, C.; Cao, S. Development of urban air environmental control policies and measures. Indoor Built Environ. 2022, 32, 299–304. [Google Scholar] [CrossRef]
- Avdoulou, M.; Golfinopoulos, A.; Kalavrouziotis, I. Monitoring Air Pollution in Greek Urban Areas during the Lockdowns, as a Response Measure of SARS-CoV-2 (COVID-19). Water Air Soil Pollut. 2023, 234, 13. [Google Scholar] [CrossRef] [PubMed]
- Pushpawela, B.; Shelton, S.; Liyanage, G.; Jayasekara, S.; Rajapaksha, D.; Jayasundara, A.; Das Jayasuriya, L. Changes of Air Pollutants in Urban Cities during the COVID-19 Lockdown-Sri Lanka. Aerosol Air Qual. Res. 2023, 23, 220223. [Google Scholar] [CrossRef]
- Kumar, K.; Pande, B.P. Air pollution prediction with machine learning: A case study of Indian cities. Int. J. Environ. Sci. Technol. 2023, 20, 5333–5348. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, F.; Fang, D.; Wang, Q.; Liu, M. Spatial characteristics of change trends of air pollutants in Chinese urban areas during 2016–2020: The impact of air pollution controls and the COVID-19 pandemic. Atmos. Res. 2023, 283, 36465231. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Liu, P.; Song, H.; Yang, D.; Yang, J.; Song, G.; Miao, C.; Zhang, J.; Zhang, L. Effects of anthropogenic precursor emissions and meteorological conditions on PM2.5 concentrations over the “2+26” cities of Northern China. Environ. Pollut. 2022, 315, 120392. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.J.; Yeganeh, A.; Chia, M.Y.; Shiu, H.Y.; Ooi, M.C.G.; Chang, J.H.W.; Shimizu, Y.; Ryosuke, H.; Try, S.; Elbeltagi, A. Quantification of COVID-19 impacts on NO2 and O3: Systematic model selection and hyperparameter optimization on AI-based meteorological-normalization methods. Atmos. Environ. 2023, 301, 119677. [Google Scholar] [CrossRef]
- Yu, Y.J.; Meng, X.Y.; Wang, Z.; Zhou, W.; Yu, H.X. Driving Factors of the Significant Increase in Surface Ozone in the Bei-jing-Tianjin-Hebei Region, China, during 2013–2018. J. Environ. Sci. 2020, 41, 106–114. [Google Scholar] [CrossRef]
- Choi, Y.; Wang, Y.; Zeng, T.; Cunnold, D.; Yang, E.; Martin, R.; Chance, K.; Thouret, V.; Edgerton, E. Spring-time transitions of NO2, CO and O3 over North America: Model evaluation and analysis. J. Geophys. Res. 2008, 113, 4. [Google Scholar] [CrossRef]
- Mao, H.T.; Talbot, R. O3 and CO in New England: Temporal variations and relationships. J. Geophys. Res. 2004, 109, 11. [Google Scholar] [CrossRef]
- Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 21. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 4–494. [Google Scholar] [CrossRef]
- Li, W. Characteristics of Atmospheric Pollution in a Chinese Megacity: Insights from Three Different Functional Areas. Sustainability 2023, 15, 2429. [Google Scholar] [CrossRef]
Period | Winter Lockdown | Spring Lockdown |
---|---|---|
AF | From 26 January to 25 February 2020 | From 28 March to 31 May 2022 |
BF | From 25 December 2019 to 25 January 2020 | From 26 February to 27 March 2022 |
BG | From 26 January to 25 February for 2016–2019 | From 28 March to 31 May for 2017–2021 except 2020 |
Variables | Winter | Spring | Winter | Spring | Winter | Spring | Difference * | Winter | Spring | Winter | Spring |
---|---|---|---|---|---|---|---|---|---|---|---|
AQI | 73.88 | 61.17 | 72.61 | 52.63 | 54.33 | 43.55 | −10.78 | (AF vs. BG) | (AF vs. BF) | ||
−26.47% | −28.79% | −25.18% | −17.24% | ||||||||
PM2.5 (μg·m−3) | 51.23 | 35.99 | 52.42 | 29.58 | 37.46 | 22.13 | −15.33 | −26.88% | −38.50% | −28.55% | −25.19% |
PM10 (μg·m−3) | 66.79 | 58.96 | 44.82 | 54.65 | 36.56 | 34.01 | −2.55 | −45.27% | −42.31% | −18.44% | −37.76% |
NO2 (μg·m−3) | 39.55 | 39.27 | 49.94 | 31.67 | 27.09 | 17.22 | −9.87 | −31.52% | −56.14% | −45.76% | −45.61% |
SO2 (μg·m−3) | 14.80 | 8.20 | 6.90 | 5.81 | 6.08 | 6.42 | 0.34 | −58.92% | −21.77% | −11.89% | 10.53% |
CO (mg·m−3) | 0.84 | 0.65 | 0.83 | 0.66 | 0.66 | 0.74 | 0.08 | −21.42% | 13.85% | −20.92% | 12.12% |
O3 (μg·m−3) | 53.34 | 88.11 | 43.14 | 76.81 | 69.04 | 102.74 | 33.7 | 29.44% | 16.60% | 60.05% | 33.76% |
Nighttime Light Brightness Difference (cm−2·sr−1·grid−1) | PM2.5 (μg·m−3) | NO2 (μg·m−3) | |||
---|---|---|---|---|---|
winter | spring | winter | spring | winter | spring |
−1.56 | −5.07 | −13.65 | −17.16 | −21.68 | −25.19 |
−4.53 | −3.82 | −17.23 | −6.28 | −22.11 | −28.22 |
−2.42 | −2.14 | −18.76 | −14.80 | −25.67 | −17.17 |
−6.77 | −3.25 | −17.80 | −7.92 | −22.71 | −17.57 |
−8.49 | −2.79 | −18.63 | −12.85 | −22.60 | −23.12 |
−4.02 | −5.24 | −18.53 | −15.04 | −23.35 | −20.02 |
−4.57 | −1.70 | −16.03 | −8.54 | −25.51 | −21.86 |
−2.56 | −3.46 | −15.20 | −16.97 | −12.10 | −10.27 |
−4.23 | −0.93 | −11.50 | −6.68 | −30.20 | −8.13 |
−2.63 | −0.94 | −10.10 | −8.90 | −24.30 | −22.13 |
−0.65 | −1.10 | −14.60 | −7.34 | −19.96 | −12.09 |
0.28 | −0.08 | −4.20 | −3.68 | −5.15 | −4.26 |
−0.19 | −0.62 | −6.53 | −6.96 | −14.40 | −14.82 |
−0.72 | −0.53 | −18.23 | −7.16 | −24.80 | −15.19 |
−0.14 | −0.99 | −6.80 | −7.65 | −7.80 | −8.65 |
−0.07 | −0.15 | −11.56 | −11.64 | −8.01 | −6.09 |
PM2.5 | PM10 | SO2 | NO2 | O3 | CO | ||
---|---|---|---|---|---|---|---|
Local emission estimates (μg·m−3) | winter | 39.42 | 35.37 | 4.89 | 29.78 | 65.63 | 0.72 |
spring | 25.50 | 51.10 | 7.62 | 23.71 | 97.63 | 0.72 | |
Human-related emission reduction (μg·m−3) * | winter | 2.36 | 14.34 | 1.45 | 5.56 | −6.29 | 0.02 |
spring | 5.72 | 6.72 | −1.13 | 5.54 | −17.71 | −0.05 | |
Rate of change ** | winter | −23.10% | −45.84% | −49.99% | −37.76% | 11.44% | −2.41% |
spring | −48.50% | −46.21% | 9.60% | −38.54% | 39.81% | 9.97% |
Season | AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|---|
AQI | Winter | 1 | ||||||
Spring | 1 | |||||||
PM2.5 | Winter | 0.98 ** | 1 | |||||
Spring | 0.82 ** | 1 | ||||||
PM10 | Winter | 0.84 ** | 0.78 ** | 1 | ||||
Spring | 0.89 ** | 0.55 ** | 1 | |||||
SO2 | Winter | 0.46 ** | 0.49 ** | 0.41 ** | 1 | |||
Spring | 0.34 ** | 0.39 ** | 0.31 ** | 1 | ||||
NO2 | Winter | 0.52 ** | 0.56 ** | 0.47 ** | 0.59 ** | 1 | ||
Spring | 0.43 ** | 0.57 ** | 0.31 ** | 0.39 ** | 1 | |||
O3 | Winter | 0.26 ** | −0.27 * | 0.31 ** | −0.02 * | −0.36 ** | 1 | |
Spring | 0.15 ** | −0.03 * | 0.17 ** | 0.28 ** | −0.26 ** | 1 | ||
CO | Winter | 0.74 ** | 0.78 ** | 0.65 ** | 0.44 ** | 0.55 ** | −0.52 ** | 1 |
Spring | 0.45 ** | 0.66 ** | 0.27 ** | 0.27 ** | 0.51 ** | −0.13 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, Y.; Zhang, L. Comparison of Air Pollutants during the Two COVID-19 Lockdown Periods in Winter 2019 and Spring 2022 in Shanghai, China. Atmosphere 2024, 15, 443. https://doi.org/10.3390/atmos15040443
Li Y, Yang Y, Zhang L. Comparison of Air Pollutants during the Two COVID-19 Lockdown Periods in Winter 2019 and Spring 2022 in Shanghai, China. Atmosphere. 2024; 15(4):443. https://doi.org/10.3390/atmos15040443
Chicago/Turabian StyleLi, Yingxuan, Yanrong Yang, and Leying Zhang. 2024. "Comparison of Air Pollutants during the Two COVID-19 Lockdown Periods in Winter 2019 and Spring 2022 in Shanghai, China" Atmosphere 15, no. 4: 443. https://doi.org/10.3390/atmos15040443
APA StyleLi, Y., Yang, Y., & Zhang, L. (2024). Comparison of Air Pollutants during the Two COVID-19 Lockdown Periods in Winter 2019 and Spring 2022 in Shanghai, China. Atmosphere, 15(4), 443. https://doi.org/10.3390/atmos15040443