Impact of the No-Driving Day Program on Air Quality in a High-Altitude Tropical City: The Case of the Toluca Valley Metropolitan Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Configuration
2.2. Monitoring Network
2.3. Emissions
2.3.1. No-Driving Day Emission Scenario
- Hologram 1: Vehicles with hologram 1 would not circulate for 52 weekdays and 24 Saturdays, totaling 76 days per year.
- Hologram 2: Vehicles with hologram 2 would not circulate for 52 weekdays and 52 Saturdays, totaling 104 days per year.
2.3.2. Model-Ready Emissions
2.4. External Transport
3. Results
3.1. Model Evaluation
3.2. External Transport
3.3. No-Driving Day
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GDP | Gross Domestic Product |
HCHO | Formaldehyde |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory |
MCMA | Mexico City Metropolitan Area |
MOVES | Motor Vehicle Emission Simulator |
NDD | No Driving Day |
NOx | Nitrogen Oxides |
RADM2 | Second generation Regional Acid Deposition Model |
VOC | Volatile Organic Compounds |
TVMA | Toluca Valley Metropolitan Area |
References
- Garcia, A. Diagnóstico Sobre la Calidad del Aire en Cuencas Atmosféricas de México; Final Report; Instituto Nacional de Ecología y Cambio Climático: Ciudad de México, México, 2016; Available online: https://www.gob.mx/cms/uploads/attachment/file/269889/Informe_Final_DCACAM.pdf (accessed on 3 February 2024).
- Mario-Molina, C. Políticas Públicas para el Mejoramiento de la Calidad del Aire. Caso de Estudio: Zona Metropolitana del Valle de México; Final Report 1; Centro Mario Molina: Ciudad de México, México, 2014; Available online: https://centromariomolina.org/wp-content/uploads/2014/06/RE_HNC_ZMVM2014.pdf (accessed on 3 February 2024).
- Ruiz-Suárez, G.; Calderón-Ezquerro, M.; Delgado-Campos, J.; Garcia-Martinez, R.; Garcia, A.; Grutter, M.; Molina, L.; Peralta-Rosales, O.; Torres-Jarcón, R.; Zavala-Hidalgo, J. Estudios de Calidad del Aire y su Impacto en la Región Centro de México; Final Report 2; Instituto Nacional de Ecología y Cambio Climático: Ciudad de México, México, 2015; Available online: https://www.gob.mx/cms/uploads/attachment/file/251716/Informe_Final_-_ECAICM_Tomo_2.pdf (accessed on 3 February 2024).
- SEMARNAT. Inventario Nacional de Emisiones 2016; Technical Report; Secretaria del Medio Ambiente y Recursos Naturales: Ciudad de México, México, 2018; Available online: https://www.gob.mx/semarnat/documentos/documentos-del-inventario-nacional-de-emisiones (accessed on 27 February 2024).
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 3 February 2024).
- CGCSA. Informe Nacional de la Calidad del Aire 2019; Technical Report; Instituto Nacional de Ecología y Cambio Climático: Ciudad de México, México, 2020; Available online: https://sinaica.inecc.gob.mx/archivo/informes/Informe2019.pdf (accessed on 3 February 2024).
- Senado de Mexico. Dictamen; Gaceta LIX/3PPO-119-147/6290; Senado de la República: Ciudad de México, México, 2024; Available online: https://www.senado.gob.mx/65/gaceta_del_senado/documento/62905 (accessed on 27 February 2024).
- Onursal, B.; Gautam, S. Vehicular Air Pollution: Experiences from Seven Latin American Urban Centers; World Bank: Washington, DC, USA, 1997; Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-11344288688&partnerID=40&md5=2a4657954a34fc7197ac5832e241cab3 (accessed on 29 February 2024).
- Davis, L.W. The Effect of Driving Restrictions on Air Quality in Mexico City. J. Political Econ. 2008, 116, 38–81. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, S.; Wang, R. Restricting driving for better traffic and clearer skies: Did it work in Beijing? Transp. Policy 2014, 32, 34–41. [Google Scholar] [CrossRef]
- Davis, L.W. Saturday Driving Restrictions Fail to Improve Air Quality in Mexico City. Sci. Rep. 2017, 7, 41652. [Google Scholar] [CrossRef]
- Tejeda-LeBlanc, D. Estudio Para el Análisis de Calidad del Aire en la Zona Metropolitana del Valle de Toluca para Determinar la Viabilidad de la Implementación del Acuerdo “Hoy No Circula”; LT Consulting: Ciudad de México, México, 2023; Available online: https://www.gob.mx/cms/uploads/attachment/file/892827/27_Informe_analisis_de_la_calidad_del_aire_ZMVT_prog_HNC.pdf (accessed on 27 February 2024).
- Díaz-Ramírez, P.; García-Sosa, I.; Iturbe-García, L.; Granados-Correa, F.; Sánchez-Meza, C. Contaminación Atmosférica en el Valle de Toluca. Rev. Int. Contam. Ambient. 1999, 15, 13–17. Available online: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/32632 (accessed on 27 February 2024).
- Romero, G.E.; Sandoval, P.A.; Morelos, M.J.; Reyes, G.L. Chemical-morphological analysis and evaluation of the distribution of particulate matter in the Toluca Valley; Analisis quimico-mofologico y evaluacion de la distribucion de materia particulada en el Valle de Toluca. In Proceedings of the Memorias XVII Congreso Técnico Científico, Ciudad de México, México, 4–5 December 2007; Instituto Nacional de Investigaciones Nucleares: Ciudad de México, México, 2007; p. 5. Available online: https://www.osti.gov/etdeweb/servlets/purl/20995843 (accessed on 3 February 2024).
- Ballesteros-Villegas, M.; Rotter-Zimbrón, C. Análisis de la Contaminación del Aire en los Municipios de Toluca, Metepec, San Mateo Atenco y Zinacantepec a Traves de la Metodologia de Simulacion Bajo el Metodo de Montecarlo, 2000–2020. Ph.D. Thesis, Universidad Autónoma del Estado de México, Toluca, México, 2014. Available online: http://hdl.handle.net/20.500.11799/63991 (accessed on 3 February 2024).
- Ortinez, A.; Iniestra, R.; Basaldud, R.; Tzintzin, G.; Padilla, Z.; Fajardo, A.; Lopez, R.; Neda, R.C.; Aguirre, E.; Rodriguez, R. Evaluación de la Calidad del Aire en la Zona Metropolitana del Valle de Toluca Durante la Contingencia por COVID-19; Instituto Nacional de Ecología y Cambio Climático: Ciudad de México, México, 2020; Available online: https://www.gob.mx/cms/uploads/attachment/file/571385/Reporte_Toluca_COVID__Final.pdf (accessed on 3 February 2024).
- Garcia, A.; Jazcilevich, A.; Ruiz-Suárez, L.; Torres-Jardón, R.; Suárez-Lastra, M.; Resendiz-Juárez, N. Ozone weekend effect analysis in Mexico City. Atmosfera 2009, 22, 281–297. Available online: https://www.revistascca.unam.mx/atm/index.php/atm/article/view/8627 (accessed on 3 February 2024).
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- INECC. Sistema de Calculo de Indicadores de la Calidad del Aire. SEMARNAT. 2012. Available online: http://scica.inecc.gob.mx (accessed on 27 February 2024).
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Hong, S.; Lim, J.O.J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound. Layer Meteor. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Freitas, S.R.; Grell, G.A.; Li, H. The Grell–Freitas (GF) convection parameterization: Recent developments, extensions, and applications. Geosci. Model Dev. 2021, 14, 5393–5411. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Middleton, P.; Chang, J.S.; Tang, X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. Atmos. 1990, 95, 16343–16367. [Google Scholar] [CrossRef]
- Vallamsundar, S.; Lin, J. Overview of US EPA new generation emission model: MOVES. Int. J. Transp. Urban Dev. 2011, 1, 39. [Google Scholar]
- EPA Motor Vehicle Emission Simulator (MOVES). Environmental Protection Agency. 2024. Available online: https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves (accessed on 3 February 2024).
- Garcia, A.; Mar-Morales, B.; Ruiz-Suarez, G. Spatial, temporal and speciation model of the Mexico national emissions inventory (base year 2008) for its use in air quality modeling (DiETE). Rev. Int. Contam. Ambient. 2018, 34, 635–649. [Google Scholar] [CrossRef]
- Rodríguez Zas, J.A.; Garcia-Reynoso, J.A. Updating of the 2013 national emissions inventory for air quality modeling in central Mexico. Rev. Int. Contam. Ambient. 2021, 37, 463–487. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Osibanjo, O.; Rappenglück, B.; Ahmad, M.; Jaimes-Palomera, M.; Rivera-Hernández, O.; Prieto-González, R.; Retama, A. Intercomparison of planetary boundary-layer height in Mexico City as retrieved by microwave radiometer, micro-pulse lidar and radiosondes. Atmos. Res. 2022, 271, 106088. [Google Scholar] [CrossRef]
- Garcia, A.; Mora-Ramírez, M. Implementation of the Unified Post Processor (UPP) and the Model Evaluation Tools (MET) for WRF-chem evaluation performance. Atmosfera 2017, 30, 259–273. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Liu, Z.; Li, R.; Wang, X.; Shang, P. Effects of vehicle restriction policies: Analysis using license plate recognition data in Langfang, China. Transp. Res. Part Policy Pract. 2018, 118, 89–103. [Google Scholar] [CrossRef]
- Almanza, V.; Ruiz-Suárez, L.G.; Torres-Jardón, R.; García-Reynoso, A.; Hernández-Paniagua, I.Y. Influence of biomass burning on ozone levels in the Megalopolis of Central Mexico during the COVID-19 lockdown. J. Environ. Sci. 2024, 143, 99–115. [Google Scholar] [CrossRef]
- Pérez-Martínez, Z. De la Roza, Tumba y Quema a la Roza. Tumba y Pica. Technical Report. CIMMYT. 2022. Available online: https://www.cimmyt.org/es/noticias/de-la-roza-tumba-y-quema-a-la-roza-tumba-y-pica (accessed on 3 February 2024).
Parameterization | Description |
---|---|
bl_pbl_physics | Yonsei University Outline Boundary Layer Option |
cu_physics | Grell–Freitas Scheme |
cu_rad_feedback | Feedback from parameterized convection to radiation schemes |
dust_opt | AFWA Dust Scheme |
mp_physics | Microphysics option: five-class single-moment scheme |
ra_lw_physics | Long-wave Radiation: A New Version of RRTM |
ra_sw_physics | Goddard shortwave radiation: two-stream multiband scheme with climatology ozone and cloud effect |
sf_sfclay_physics | Revised MM5 Monin–Obukhov scheme surface layer option |
sf_surface_physics | Noah’s Unified Land Surface Model Land Surface Option |
topo_wind | Topographic correction of surface winds to account for additional drag from subgrid topography and enhanced flow on hilltops |
sf_urban_physics | UCM category option with surface effects for roofs, walls and streets |
chem_opt | RADM2 chemical mechanism using KPP |
Compound | NDD (%) | |
---|---|---|
Volatile Organic Compounds | VOC | 21 |
Carbon monoxide | CO | 19 |
Nitrogen oxides | NOx | 15 |
Nitrogen dioxide | NO2 | 15 |
Ammonia | NH3 | 19 |
Sulfur dioxide | SO2 | 18 |
10 µm particles | PM10 | 21 |
2.5 µm particles | PM2.5 | 20 |
Carbon dioxide | CO2 | 17 |
Methane | CH4 | 16 |
Black carbon | BC | 14 |
Variable | RMSE | r | IOA | ||||||
---|---|---|---|---|---|---|---|---|---|
P-Jan | P-May | P-Oct | P-Jan | P-May | P-Oct | P-Jan | P-May | P-Oct | |
O3 (ppb) | 8.60 | 18.40 | 10.79 | 0.94 | 0.76 | 0.87 | 0.88 | 0.66 | 0.79 |
T (∘C) | 2.40 | 1.80 | 1.86 | 0.96 | 0.98 | 0.97 | 0.79 | 0.84 | 0.78 |
CO (ppm) | 432.50 | 421.00 | 359.10 | 0.84 | 0.81 | 0.61 | 0.65 | 0.55 | 0.44 |
NO2 (ppb) | 12.50 | 9.10 | 9.04 | 0.62 | 0.77 | 0.51 | 0.53 | 0.68 | 0.31 |
SO2 (ppb) | 2.60 | 2.60 | 1.96 | 0.41 | 0.54 | 0.37 | 0.46 | 0.29 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, A.; Almanza, V.; Tejeda, D.; Alvarado-Castillo, M. Impact of the No-Driving Day Program on Air Quality in a High-Altitude Tropical City: The Case of the Toluca Valley Metropolitan Area. Atmosphere 2024, 15, 437. https://doi.org/10.3390/atmos15040437
Garcia A, Almanza V, Tejeda D, Alvarado-Castillo M. Impact of the No-Driving Day Program on Air Quality in a High-Altitude Tropical City: The Case of the Toluca Valley Metropolitan Area. Atmosphere. 2024; 15(4):437. https://doi.org/10.3390/atmos15040437
Chicago/Turabian StyleGarcia, Agustin, Victor Almanza, Dzoara Tejeda, and Mauro Alvarado-Castillo. 2024. "Impact of the No-Driving Day Program on Air Quality in a High-Altitude Tropical City: The Case of the Toluca Valley Metropolitan Area" Atmosphere 15, no. 4: 437. https://doi.org/10.3390/atmos15040437
APA StyleGarcia, A., Almanza, V., Tejeda, D., & Alvarado-Castillo, M. (2024). Impact of the No-Driving Day Program on Air Quality in a High-Altitude Tropical City: The Case of the Toluca Valley Metropolitan Area. Atmosphere, 15(4), 437. https://doi.org/10.3390/atmos15040437