Important Contribution to Aerosol Oxidative Potential from Residential Solid Fuel Burning in Central Ireland
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sampling Site
2.2. OP Determination
2.3. Characterization of the Aerosol Components and Organic Aerosol Source Apportionment
3. Results
3.1. Aerosol Chemical Composition and Sources
3.2. Temporal Variability of OP
3.3. OP Source Apportionment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brunekreef, B.; Holgate, S.T. Air Pollution and Health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Gillen, D.L.; Schauer, J.J.; Shafer, M.M. Airway Inflammation and Oxidative Potential of Air Pollutant Particles in a Pediatric Asthma Panel. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Thurston, G.D. To Fine Particulate Air Pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, J.C.; Kim, E.; Sheppard, L.; Sullivan, J.H.; Larson, T.V.; Claiborn, C. Association between Particulate Matter and Emergency Room Visits, Hospital Admissions and Mortality in Spokane, Washington. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.C.; Coburn, J.; Garrick, J.M. Effects of Air Pollution on the Nervous System and Its Possible Role in Neurodevelopmental and Neurodegenerative Disorders. Pharmacol. Ther. 2020, 210, 107523. [Google Scholar] [CrossRef] [PubMed]
- Potter, N.A.; Meltzer, G.Y.; Avenbuan, O.N.; Raja, A.; Zelikoff, J.T. Particulate Matter and Associated Metals: A Link with Neurotoxicity and Mental Health. Atmosphere 2021, 12, 425. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Ripley, S.; Weichenthal, S.; Godri Pollitt, K.J. Ambient Particulate Matter Oxidative Potential: Chemical Determinants, Associated Health Effects, and Strategies for Risk Management. Free Radic. Biol. Med. 2020, 151, 7–25. [Google Scholar] [CrossRef]
- Zhou, J.; Zotter, P.; Bruns, E.A.; Stefenelli, G.; Bhattu, D.; Brown, S.; Bertrand, A.; Marchand, N.; Lamkaddam, H.; Slowik, J.G.; et al. Particle-Bound Reactive Oxygen Species (PB-ROS) Emissions and Formation Pathways in Residential Wood Smoke under Different Combustion and Aging Conditions. Atmos. Chem. Phys. 2018, 18, 6985–7000. [Google Scholar] [CrossRef]
- Lakey, P.S.J.; Berkemeier, T.; Tong, H.; Arangio, A.M.; Lucas, K.; Pöschl, U.; Shiraiwa, M. Chemical Exposure-Response Relationship between Air Pollutants and Reactive Oxygen Species in the Human Respiratory Tract. Sci. Rep. 2016, 6, 32916. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, N.; Patel, A. Oxidative Potential of Ambient Aerosols: An Indian Perspective. Curr. Sci. 2017, 112, 35–39. [Google Scholar] [CrossRef]
- Leni, Z.; Künzi, L.; Geiser, M. Air Pollution Causing Oxidative Stress. Curr. Opin. Toxicol. 2020, 20–21, 1–8. [Google Scholar] [CrossRef]
- Crobeddu, B.; Aragao-Santiago, L.; Bui, L.C.; Boland, S.; Baeza Squiban, A. Oxidative Potential of Particulate Matter 2.5 as Predictive Indicator of Cellular Stress. Environ. Pollut. 2017, 230, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, Q.; Yang, X.; Li, G.; Zhang, J.; Zhou, X.; Jiang, W. Cytotoxicity of the Soluble and Insoluble Fractions of Atmospheric Fine Particulate Matter. J. Environ. Sci. 2020, 91, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.; Toro, A.R.; Manzano, C.A.; Canepari, S.; Massimi, L.; Leiva-Guzmán, M.A. Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. Atmosphere 2020, 11, 917. [Google Scholar] [CrossRef]
- Wilson, W.E. The Exposure Paradox in Particulate Matter Community Time-Series Epidemiology: Can Ambient Concentrations of PM Be Used as a Surrogate for Personal Exposure to PM? Epidemiology 2001, 12, 530. [Google Scholar]
- Bates, J.T.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J.; Tolbert, P.E.; Abrams, J.Y.; Sarnat, S.E.; Klein, M.; Mulholland, J.A.; et al. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environ. Sci. Technol. 2019, 53, 4003–4019. [Google Scholar] [CrossRef]
- Cho, A.K.; Sioutas, C.; Miguel, A.H.; Kumagai, Y.; Schmitz, D.A.; Singh, M.; Eiguren-Fernandez, A.; Froines, J.R. Redox Activity of Airborne Particulate Matter at Different Sites in the Los Angeles Basin. Environ. Res. 2005, 99, 40–47. [Google Scholar] [CrossRef]
- Kumagai, Y.; Koide, S.; Taguchi, K.; Endo, A.; Nakai, Y.; Yoshikawa, T.; Shimojo, N. Oxidation of Proximal Protein Sulfhydryls by Phenanthraquinone, a Component of Diesel Exhaust Particles. Chem. Res. Toxicol. 2002, 15, 483–489. [Google Scholar] [CrossRef]
- Venkatachari, P.; Hopke, P.K.; Grover, B.D.; Eatough, D.J. Measurement of Particle-Bound Reactive Oxygen Species in Rubidoux Aerosols. J. Atmos. Chem. 2005, 50, 49–58. [Google Scholar] [CrossRef]
- Antonini, J.M.; Clarke, R.W.; Murthy, G.G.K.; Sreekanthan, P.; Jenkins, N.; Eagar, T.W.; Brain, J.D. Freshly Generated Stainless Steel Welding Fume Induces Greater Lung Inflammation in Rats as Compared to Aged Fume. Toxicol. Lett. 1998, 98, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Polidori, A.; Arhami, M.; Shafer, M.M.; Schauer, J.J.; Cho, A.; Sioutas, C. Redox Activity and Chemical Speciation of Size Fractioned PM in the Communities of the Los Angeles-Long Beach Harbor. Atmos. Chem. Phys. 2008, 8, 6439–6451. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Yang, A.; Strak, M.; Steenhof, M.; Hellack, B.; Gerlofs-Nijland, M.E.; Kuhlbusch, T.; Kelly, F.; Harrison, R.; Brunekreef, B.; et al. Oxidative Potential of Particulate Matter Collected at Sites with Different Source Characteristics. Sci. Total Environ. 2014, 472, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, L.; Froines, J.R.; Cho, A.K.; Sioutas, C. Relationship between Redox Activity and Chemical Speciation of Size-Fractionated Particulate Matter. Part. Fibre Toxicol. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Shafer, M.M.; Hemming, J.D.C.; Antkiewicz, D.S.; Schauer, J.J. Oxidative Potential of Size-Fractionated Atmospheric Aerosol in Urban and Rural Sites across Europe. Faraday Discuss. 2016, 189, 381–405. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Zeng, L.; Gao, D.; Verma, V.; Stefaniak, A.B.; Weber, R.J. Ambient Size Distributions and Lung Deposition of Aerosol Dithiothreitol-Measured Oxidative Potential: Contrast between Soluble and Insoluble Particles. Environ. Sci. Technol. 2017, 51, 6802–6811. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Verma, V.; T Bates, J.; Abrams, J.; Klein, M.; Strickland, J.M.; Sarnat, E.S.; Chang, H.H.; Mulholland, A.J.; Tolbert, E.P.; et al. Oxidative Potential of Ambient Water-Soluble PM2.5 in the Southeastern United States: Contrasts in Sources and Health Associations between Ascorbic Acid (AA) and Dithiothreitol (DTT) Assays. Atmos. Chem. Phys. 2016, 16, 3865–3879. [Google Scholar] [CrossRef]
- Verma, V.; Ning, Z.; Cho, A.K.; Schauer, J.J.; Shafer, M.M.; Sioutas, C. Redox Activity of Urban Quasi-Ultrafine Particles from Primary and Secondary Sources. Atmos. Environ. 2009, 43, 6360–6368. [Google Scholar] [CrossRef]
- Verma, V.; Fang, T.; Guo, H.; King, L.; Bates, J.T.; Peltier, R.E.; Edgerton, E.; Russell, A.G.; Weber, R.J. Reactive Oxygen Species Associated with Water-Soluble PM2.5 in the Southeastern United States: Spatiotemporal Trends and Source Apportionment. Atmos. Chem. Phys. 2014, 14, 12915–12930. [Google Scholar] [CrossRef]
- Lin, P.; Yu, J.Z. Generation of Reactive Oxygen Species Mediated by Humic-like Substances in Atmospheric Aerosols. Environ. Sci. Technol. 2011, 45, 10362–10368. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Rico-Martinez, R.; Kotra, N.; King, L.; Liu, J.; Snell, T.W.; Weber, R.J. Contribution of Water-Soluble and Insoluble Components and Their Hydrophobic/Hydrophilic Subfractions to the Reactive Oxygen Species-Generating Potential of Fine Ambient Aerosols. Environ. Sci. Technol. 2012, 46, 11384–11392. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Fang, T.; Xu, L.; Peltier, R.E.; Russell, A.G.; Ng, N.L.; Weber, R.J. Organic Aerosols Associated with the Generation of Reactive Oxygen Species (ROS) by Water-Soluble PM2.5. Environ. Sci. Technol. 2015, 49, 4646–4656. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.Y.; Lazaro, R.A.; Lim, D.; Jackson, J.; Lyon, J.; Rendulic, D.; Hasson, A.S. Aerosol-Borne Quinones and Reactive Oxygen Species Generation by Particulate Matter Extracts. Environ. Sci. Technol. 2006, 40, 4880–4886. [Google Scholar] [CrossRef] [PubMed]
- Pietrogrande, M.C.; Bacco, D.; Demaria, G.; Russo, M.; Scotto, F.; Trentini, A. Polycyclic Aromatic Hydrocarbons and Their Oxygenated Derivatives in Urban Aerosol: Levels, Chemical Profiles, and Contribution to PM2.5 Oxidative Potential. Environ. Sci. Pollut. Res. 2022, 29, 54391–54406. [Google Scholar] [CrossRef] [PubMed]
- McWhinney, R.D.; Zhou, S.; Abbatt, J.P.D. Naphthalene SOA: Redox Activity and Naphthoquinone Gas-Particle Partitioning. Atmos. Chem. Phys. 2013, 13, 9731–9744. [Google Scholar] [CrossRef]
- Lin, Y.H.; Arashiro, M.; Martin, E.; Chen, Y.; Zhang, Z.; Sexton, K.G.; Gold, A.; Jaspers, I.; Fry, R.C.; Surratt, J.D. Isoprene-Derived Secondary Organic Aerosol Induces the Expression of Oxidative Stress Response Genes in Human Lung Cells. Environ. Sci. Technol. Lett. 2016, 3, 250–254. [Google Scholar] [CrossRef]
- Jiang, H.; Jang, M.; Yu, Z. Dithiothreitol Activity by Particulate Oxidizers of SOA Produced from Photooxidation of Hydrocarbons under Varied NOx Levels. Atmos. Chem. Phys. 2017, 17, 9965–9977. [Google Scholar] [CrossRef]
- Jiang, H.; Jang, M. Dynamic Oxidative Potential of Atmospheric Organic Aerosol under Ambient Sunlight. Environ. Sci. Technol. 2018, 52, 7496–7504. [Google Scholar] [CrossRef]
- Kramer, A.J.; Rattanavaraha, W.; Zhang, Z.; Gold, A.; Surratt, J.D.; Lin, Y.H. Assessing the Oxidative Potential of Isoprene-Derived Epoxides and Secondary Organic Aerosol. Atmos. Environ. 2016, 130, 211–218. [Google Scholar] [CrossRef]
- Charrier, J.G.; Anastasio, C. On Dithiothreitol (DTT) as a Measure of Oxidative Potential for Ambient Particles: Evidence for the Importance of Soluble \newline Transition Metals. Atmos. Chem. Phys. 2012, 12, 9321–9333. [Google Scholar] [CrossRef]
- Hedayat, F.; Stevanovic, S.; Miljevic, B.; Bottle, S.; Ristovski, Z.D. Evaluiranje Adekvatosti Molekulskih Proba Za Merenje Oksidativnog Potencijala Respirabilnih Čestica. Chem. Ind. Chem. Eng. Q. 2015, 21, 201–210. [Google Scholar] [CrossRef]
- Patel, A.; Rastogi, N. Oxidative Potential of Ambient Fine Aerosol over a Semi-Urban Site in the Indo-Gangetic Plain. Atmos. Environ. 2018, 175, 127–134. [Google Scholar] [CrossRef]
- Fujitani, Y.; Furuyama, A.; Tanabe, K.; Hirano, S. Comparison of Oxidative Abilities of PM2.5 Collected at Traffic and Residential Sites in Japan. Contribution of Transition Metals and Primary and Secondary Aerosols. Aerosol Air Qual. Res. 2017, 17, 574–587. [Google Scholar] [CrossRef]
- Kurihara, K.; Iwata, A.; Horwitz, S.G.M.; Ogane, K.; Sugioka, T.; Matsuki, A.; Okuda, T. Contribution of Physical and Chemical Properties to Dithiothreitol-Measured Oxidative Potentials of Atmospheric Aerosol Particles at Urban and Rural Sites in Japan. Atmosphere 2022, 13, 319. [Google Scholar] [CrossRef]
- Godri, K.J.; Duggan, S.T.; Fuller, G.W.; Baker, T.; Green, D.; Kelly, F.J.; Mudway, I.S. Particulate Matter Oxidative Potential from Waste Transfer Station Activity. Environ. Health Perspect. 2010, 118, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Visentin, M.; Pagnoni, A.; Sarti, E.; Pietrogrande, M.C. Urban PM2.5 Oxidative Potential: Importance of Chemical Species and Comparison of Two Spectrophotometric Cell-Free Assays. Environ. Pollut. 2016, 219, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Baumgartner, J.; Zhang, Y.; Liu, Y.; Sun, Y.; Zhang, M. Oxidative Potential and Inflammatory Impacts of Source Apportioned Ambient Air Pollution in Beijing. Environ. Sci. Technol. 2014, 48, 12920–12929. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hartner, E.; Utinger, B.; Gfeller, B.; Paul, A.; Sklorz, M.; Czech, H.; Yang, B.X.; Su, X.Y.; Jakobi, G.; et al. Are Reactive Oxygen Species (ROS) a Suitable Metric to Predict Toxicity of Carbonaceous Aerosol Particles? Atmos. Chem. Phys. 2022, 22, 1793–1809. [Google Scholar] [CrossRef]
- Argyropoulos, G.; Besis, A.; Voutsa, D.; Samara, C.; Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source Apportionment of the Redox Activity of Urban Quasi-Ultrafine Particles (PM0.49) in Thessaloniki Following the Increased Biomass Burning Due to the Economic Crisis in Greece. Sci. Total Environ. 2016, 568, 124–136. [Google Scholar] [CrossRef]
- Liu, W.J.; Xu, Y.S.; Liu, W.X.; Liu, Q.Y.; Yu, S.Y.; Liu, Y.; Wang, X.; Tao, S. Oxidative Potential of Ambient PM2.5 in the Coastal Cities of the Bohai Sea, Northern China: Seasonal Variation and Source Apportionment. Environ. Pollut. 2018, 236, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Polidori, A.; Schauer, J.J.; Shafer, M.M.; Cassee, F.R.; Sioutas, C. Physicochemical and Toxicological Profiles of Particulate Matter in Los Angeles during the October 2007 Southern California Wildfires. Environ. Sci. Technol. 2009, 43, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Ovadnevaite, J.; Lin, C.; Rinaldi, M.; Ceburnis, D.; Buckley, P.; Coleman, L.; Facchini, M.C.; Wenger, J.; O’Dowd, C. Air Pollution Sources in Ireland; Environmental Protection Agency: Wexford, Ireland, 2021; ISBN 9781800090071. [Google Scholar]
- Wenger, J.; Arndt, J.; Buckley, P.; Hellebust, S.; Mcgillicuddy, E.; O’Connor, I.; Sodeau, J.; Wilson, E. Source Apportionment of Particulate Matter in Urban and Rural Residential Areas of Ireland (SAPPHIRE); Environmental Protection Agency: Wexford, Ireland, 2020. [Google Scholar]
- Lin, C.; Ceburnis, D.; Huang, R.J.; Xu, W.; Spohn, T.; Martin, D.; Buckley, P.; Wenger, J.; Hellebust, S.; Rinaldi, M.; et al. Wintertime Aerosol Dominated by Solid-Fuel-Burning Emissions across Ireland: Insight into the Spatial and Chemical Variation in Submicron Aerosol. Atmos. Chem. Phys. 2019, 19, 14091–14106. [Google Scholar] [CrossRef]
- Molina, C.; Andrade, C.; Manzano, C.A.; Toro, A.R.; Verma, V.; Leiva-Guzmán, M.A. Dithiothreitol-Based Oxidative Potential for Airborne Particulate Matter: An Estimation of the Associated Uncertainty. Environ. Sci. Pollut. Res. 2020, 27, 29672–29680. [Google Scholar] [CrossRef] [PubMed]
- Borlaza, L.J.S.; Weber, S.; Uzu, G.; Jacob, V.; Cañete, T.; Micallef, S.; Trébuchon, C.; Slama, R.; Favez, O.; Jaffrezo, J.L. Disparities in Particulate Matter (PM10) Origins and Oxidative Potential at a City Scale (Grenoble, France)—Part 1: Source Apportionment at Three Neighbouring Sites. Atmos. Chem. Phys. 2021, 21, 5415–5437. [Google Scholar] [CrossRef]
- Ng, N.L.; Herndon, S.C.; Trimborn, A.; Canagaratna, M.R.; Croteau, P.L.; Onasch, T.B.; Sueper, D.; Worsnop, D.R.; Zhang, Q.; Sun, Y.L.; et al. An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol. Aerosol Sci. Technol. 2011, 45, 780–794. [Google Scholar] [CrossRef]
- Lin, C.; Ceburnis, D.; Hellebust, S.; Buckley, P.; Wenger, J.; Canonaco, F.; Prévôt, A.S.H.; Huang, R.J.; O’Dowd, C.; Ovadnevaite, J. Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland. Environ. Sci. Technol. 2017, 51, 10624–10632. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Verma, V.; Guo, H.; King, L.E.; Edgerton, E.S.; Weber, R.J. A Semi-Automated System for Quantifying the Oxidative Potential of Ambient Particles in Aqueous Extracts Using the Dithiothreitol (DTT) Assay: Results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). Atmos. Meas. Tech. 2015, 8, 471–482. [Google Scholar] [CrossRef]
- Wang, J.; Lin, X.; Lu, L.; Wu, Y.; Zhang, H.; Lv, Q.; Liu, W.; Zhang, Y.; Zhuang, S. Temporal Variation of Oxidative Potential of Water Soluble Components of Ambient PM2.5 Measured by Dithiothreitol (DTT) Assay. Sci. Total Environ. 2019, 649, 969–978. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Perrone, M.R.; Manarini, F.; Romano, S.; Udisti, R.; Becagli, S. PM10 Oxidative Potential at a Central Mediterranean Site: Association with Chemical Composition and Meteorological Parameters. Atmos. Environ. 2018, 188, 97–111. [Google Scholar] [CrossRef]
- Clemente; Gil-Moltó, J.; Yubero, E.; Juárez, N.; Nicolás, J.F.; Crespo, J.; Galindo, N. Sensitivity of PM10 Oxidative Potential to Aerosol Chemical Composition at a Mediterranean Urban Site: Ascorbic Acid versus Dithiothreitol Measurements. Air Qual. Atmos. Health 2023, 16, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Borlaza, L.J.; Weber, S.; Marsal, A.; Uzu, G.; Jacob, V.; Besombes, J.L.; Chatain, M.; Conil, S.; Jaffrezo, J.L. Nine-Year Trends of PM10 sources and Oxidative Potential in a Rural Background Site in France. Atmos. Chem. Phys. 2022, 22, 8701–8723. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Romanato, L.; Russo, M. Synergistic and Antagonistic Effects of Aerosol Components on Its Oxidative Potential as Predictor of Particle Toxicity. Toxics 2022, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Vörösmarty, M.; Uzu, G.; Jaffrezo, J.L.; Dominutti, P.; Kertész, Z.; Papp, E.; Salma, I. Oxidative Potential in Rural, Suburban and City Centre Atmospheric Environments in Central Europe. Atmos. Chem. Phys. 2023, 23, 14255–14269. [Google Scholar] [CrossRef]
- Costabile, F.; Decesari, S.; Vecchi, R.; Lucarelli, F.; Curci, G.; Massabò, D.; Rinaldi, M.; Gualtieri, M.; Corsini, E.; Menegola, E.; et al. On the Redox-Activity and Health-Effects of Atmospheric Primary and Secondary Aerosol: Phenomenology. Atmosphere 2022, 13, 704. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bacco, D.; Trentini, A.; Russo, M. Effect of Filter Extraction Solvents on the Measurement of the Oxidative Potential of Airborne PM2.5. Environ. Sci. Pollut. Res. 2021, 28, 29551–29563. [Google Scholar] [CrossRef] [PubMed]
- Chirizzi, D.; Cesari, D.; Rachele, M.; Dinoi, A.; Giotta, L.; Donateo, A.; Contini, D. In Fl Uence of Saharan Dust Outbreaks and Carbon Content on Oxidative Potential of Water-Soluble Fractions of PM2.5 and PM10. Atmos. Environ. 2017, 163, 1–8. [Google Scholar] [CrossRef]
- Hakimzadeh, M.; Soleimanian, E.; Mousavi, A.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The Impact of Biomass Burning on the Oxidative Potential of PM2.5 in the Metropolitan Area of Milan. Atmos. Environ. 2020, 224, 117328. [Google Scholar] [CrossRef]
- Velali, E.; Papachristou, E.; Pantazaki, A.; Choli-Papadopoulou, T.; Planou, S.; Kouras, A.; Manoli, E.; Besis, A.; Voutsa, D.; Samara, C. Redox Activity and in Vitro Bioactivity of the Water-Soluble Fraction of Urban Particulate Matter in Relation to Particle Size and Chemical Composition. Environ. Pollut. 2016, 208, 774–786. [Google Scholar] [CrossRef]
- Farahani, V.J.; Altuwayjiri, A.; Pirhadi, M.; Verma, V.; Ruprecht, A.A.; Diapouli, E.; Eleftheriadis, K.; Sioutas, C. The Oxidative Potential of Particulate Matter (PM) in Different Regions around the World and Its Relation to Air Pollution Sources. Environ. Sci. Atmos. 2022, 2, 1076–1086. [Google Scholar] [CrossRef]
- Bates, J.T.; Weber, R.J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.; Mulholland, J.A.; et al. Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects. Environ. Sci. Technol. 2015, 49, 13605–13612. [Google Scholar] [CrossRef] [PubMed]
- Abrams, J.Y.; Weber, R.J.; Klein, M.; Samat, S.E.; Chang, H.H.; Strickland, M.J.; Verma, V.; Fang, T.; Bates, J.T.; Mulholland, J.A.; et al. Associations between Ambient Fine Particulate Oxidative Potential and Cardiorespiratory Emergency Department Visits. Environ. Health Perspect. 2017, 125, 107008. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Janssen, N.A.H.; Brunekreef, B.; Cassee, F.R.; Hoek, G.; Gehring, U. Children’s Respiratory Health and Oxidative Potential of PM2.5: The PIAMA Birth Cohort Study. Occup. Environ. Med. 2016, 73, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Janssen, N.A.H.; Strak, M.; Yang, A.; Hellack, B.; Kelly, F.J.; Kuhlbusch, T.A.J.; Harrison, R.M.; Brunekreef, B.; Cassee, F.R.; Steenhof, M.; et al. Associations between Three Specific A-Cellular Measures of the Oxidative Potential of Particulate Matter and Markers of Acute Airway and Nasal Inflammation in Healthy Volunteers. Occup. Environ. Med. 2015, 72, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Cheng, I.; Al Mamun, A.; Zhang, L. A Synthesis Review on Atmospheric Wet Deposition of Particulate Elements: Scavenging Ratios, Solubility, and Flux Measurements. Environ. Rev. 2021, 29, 340–353. [Google Scholar] [CrossRef]
- Grange, S.K.; Uzu, G.; Weber, S.; Jaffrezo, J.L.; Hueglin, C. Linking Switzerland’s PM10 and PM2.5 Oxidative Potential (OP) with Emission Sources. Atmos. Chem. Phys. 2022, 22, 7029–7050. [Google Scholar] [CrossRef]
- Weber, S.; Uzu, G.; Favez, O.; Borlaza, L.J.S.; Calas, A.; Salameh, D.; Chevrier, F.; Allard, J.; Besombes, J.L.; Albinet, A.; et al. Source Apportionment of Atmospheric PM10 Oxidative Potential: Synthesis of 15 Year-Round Urban Datasets in France. Atmos. Chem. Phys. 2021, 21, 11353–11378. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, H.; Jiang, H.; Mo, Y.; Geng, X.; Li, J.; Mao, S.; Bualert, S.; Ma, S.; Li, J.; et al. Source Apportionment of Water-Soluble Oxidative Potential in Ambient Total Suspended Particulate from Bangkok: Biomass Burning versus Fossil Fuel Combustion. Atmos. Environ. 2020, 235, 117624. [Google Scholar] [CrossRef]
- Crippa, M.; Decarlo, P.F.; Slowik, J.G.; Mohr, C.; Heringa, M.F.; Chirico, R.; Poulain, L.; Freutel, F.; Sciare, J.; Cozic, J.; et al. Wintertime Aerosol Chemical Composition and Source Apportionment of the Organic Fraction in the Metropolitan Area of Paris. Atmos. Chem. Phys. 2013, 13, 961–981. [Google Scholar] [CrossRef]
- Lanz, V.A.; Prévôt, A.S.H.; Alfarra, M.R.; Weimer, S.; Mohr, C.; Decarlo, P.F.; Gianini, M.F.D.; Hueglin, C.; Schneider, J.; Favez, O.; et al. Characterization of Aerosol Chemical Composition with Aerosol Mass Spectrometry in Central Europe: An Overview. Atmos. Chem. Phys. 2010, 10, 10453–10471. [Google Scholar] [CrossRef]
- Mohr, C.; DeCarlo, P.F.; Heringa, M.F.; Chirico, R.; Slowik, J.G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; et al. Identification and Quantification of Organic Aerosol from Cooking and Other Sources in Barcelona Using Aerosol Mass Spectrometer Data. Atmos. Chem. Phys. 2012, 12, 1649–1665. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Bougiatioti, A.; Stavroulas, I.; Fang, T.; Lianou, M.; Liakakou, E.; Gerasopoulos, E.; Weber, R.; Nenes, A.; Mihalopoulos, N. Yearlong Variability of Oxidative Potential of Particulate Matter in an Urban Mediterranean Environment. Atmos. Environ. 2019, 206, 183–196. [Google Scholar] [CrossRef]
OP_DTTv | OP_DTTm | ||
---|---|---|---|
OA | 0.87 | OA/PM | 0.28 |
SO4 | 0.59 | SO4/PM | −0.25 |
NO3 | 0.63 | NO3/PM | 0.07 |
NH4 | 0.87 | NH4/PM | 0.12 |
eBC | 0.79 | eBC/PM | −0.17 |
PM | 0.87 | ||
HOA | 0.84 | HOA/PM | 0.15 |
Peat | 0.81 | Peat/PM | 0.29 |
Coal | 0.79 | Coal/PM | 0.2 |
Wood | 0.88 | Wood/PM | 0.16 |
solid fuels ** | 0.86 | solid fuels **/PM | 0.36 |
OOA | 0.83 | OOA/PM | −0.08 |
PMF OA Factor | Multi-Linear Regression Coefficient * |
---|---|
(nmol min−1 mg−1) | |
HOA | 1.94 × 10−6 ± 0.51 |
Peat | 85.5 ± 132 |
Coal | −6.97 × 10−2 ± 697 |
Wood | 1108 ± 964 |
OOA | −9.61 × 10−2 ± 420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi, M.; Manarini, F.; Lucertini, M.; Rapuano, M.; Decesari, S.; Paglione, M.; Facchini, M.C.; Lin, C.; Ceburnis, D.; D. O’Dowd, C.; et al. Important Contribution to Aerosol Oxidative Potential from Residential Solid Fuel Burning in Central Ireland. Atmosphere 2024, 15, 436. https://doi.org/10.3390/atmos15040436
Rinaldi M, Manarini F, Lucertini M, Rapuano M, Decesari S, Paglione M, Facchini MC, Lin C, Ceburnis D, D. O’Dowd C, et al. Important Contribution to Aerosol Oxidative Potential from Residential Solid Fuel Burning in Central Ireland. Atmosphere. 2024; 15(4):436. https://doi.org/10.3390/atmos15040436
Chicago/Turabian StyleRinaldi, Matteo, Francesco Manarini, Mattia Lucertini, Marco Rapuano, Stefano Decesari, Marco Paglione, Maria Cristina Facchini, Chunshui Lin, Darius Ceburnis, Colin D. O’Dowd, and et al. 2024. "Important Contribution to Aerosol Oxidative Potential from Residential Solid Fuel Burning in Central Ireland" Atmosphere 15, no. 4: 436. https://doi.org/10.3390/atmos15040436
APA StyleRinaldi, M., Manarini, F., Lucertini, M., Rapuano, M., Decesari, S., Paglione, M., Facchini, M. C., Lin, C., Ceburnis, D., D. O’Dowd, C., Buckley, P., Hellebust, S., Wenger, J., & Ovadnevaite, J. (2024). Important Contribution to Aerosol Oxidative Potential from Residential Solid Fuel Burning in Central Ireland. Atmosphere, 15(4), 436. https://doi.org/10.3390/atmos15040436