CMIP6 Simulation-Based Daily Surface Air Temperature and Precipitation Projections over the Qinghai-Tibetan Plateau in the 21st Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition and Division of Study Area
2.2. Historical Meteorological Data
- (1)
- Observation data from CMA.
- (2)
- Reanalysis data.
2.3. Combination of Reanalysis Data
2.4. Simulation and Prediction Data from GCMs
2.5. Methods of Processing CMIP6 Data
- (1)
- Downscaling.
- (2)
- Multi-model ensemble forecast.
- (3)
- Bias correction of nonstationary sequence.
2.6. Effectiveness Evaluation of Methods
- (1)
- Applicability test of downscaling method.
- (2)
- Statistical validation of bias correction.
- (3)
- Evaluation of multi-model uncertainty.
3. Results
3.1. Performance of Downscaling Methods in the Historical Period
3.2. Multi-Model Ensemble and Bias Correction Performance
3.3. Future Climate Change Projection in the QTP
4. Discussion
4.1. Availability of Reanalysis Precipitation
4.2. Availability of Downscaling Methods
4.3. Uncertainty and Reliability in Future Projections
5. Conclusions
- There is an approximately linear relationship between climatic factors and altitude in high-altitude areas. Therefore, the ANUSPLIN software, which incorporates DEM as a covariate, can more accurately fit the probability distributions of meteorological elements. Ignoring altitude’s impact on the distribution of meteorological elements during downscaling leads to the overestimation or underestimation of temperatures and overlooks extreme precipitation events. Thus, incorporating elevation data as prior information in downscaling processes is crucial. Despite significant systematic biases in GCM simulations and predictions for the QTP climate, these can be substantially mitigated by employing an advanced nonstationary bias correction method, CNCDFm. For example, this method has been shown to minimize the deviation of extreme values to nearly zero. Consequently, our research enhances the applicability and accuracy of GCM results for regional studies in the QTP.
- Based on high-resolution projections, the QTP is expected to continue experiencing warming and wetting trends. The projected temperature change range remains consistent across the QTP subregions, mirroring the historical trend where the QTP temperature increase surpasses the global surface temperature rise. Under the Shared Socioeconomic Pathway SSP1-2.6, the region is anticipated to reach a warming inflection point by the mid-21st century. Furthermore, future precipitation projections indicate significant spatial variations, with growth rates in regions such as IDR, IQTB, QDB, and TMR far exceeding the global average. Such marked increases in temperature and precipitation are likely to fundamentally transform the regional hydrological cycle.
- Two significant challenges hinder the accurate forecasting of future precipitation trends in the QTP. Firstly, the historical period lacks global high-resolution precipitation data that are convincing enough for detailed analysis, especially in ungauged regions such as the IQTB, YLZBR, TMR, and IDR. This scarcity complicates the analysis of historical precipitation changes and the calibration of GCMs. Secondly, there remains substantial uncertainty in GCM projections. While bias correction techniques can mitigate some systematic biases inherent in GCMs, the reliance on historical data to constrain future precipitation projections proves to be less effective than for temperature, rendering precipitation forecasts less reliable. This uncertainty also leads to significant discrepancies between the precipitation forecasts of BMA and MMA, both of which indicate an increasing trend across all basins. Further research is imperative to enhance the reliability of multi-model precipitation predictions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Q.H.; Lan, C.; Su, F.G.; Liu, X.C.; Sun, H.; Ding, J.; Wang, L.; Leng, G.Y.; Zhang, Y.Q.; Sang, Y.F.; et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts. Chin. Sci. Bull. Chin. 2019, 64, 2807–2821. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Zhang, X.Y.; Yu, H.; Liu, Q.Q.; Xu, L.L. Land Use-Driven Changes in Ecosystem Service Values and Simulation of Future Scenarios: A Case Study of the Qinghai-Tibet Plateau. Sustainability 2021, 13, 4079. [Google Scholar] [CrossRef]
- Yun, X.B.; Tang, Q.H.; Li, J.B.; Lu, H.; Zhang, L.; Chen, D.L. Can reservoir regulation mitigate future climate change induced hydrological extremes in the Lancang-Mekong River Basin? Sci. Total Environ. 2021, 785, 9. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.H.; Zhu, X.F.; Wu, X.D.; Pang, Q.Q.; Zou, D.F.; Chen, J.; Li, R.; Hu, G.J.; Du, Y.Z.; et al. Risk assessment of potential thaw settlement hazard in the permafrost regions of Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 776, 14. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.P.; Li, L.; Chen, L.; Zhang, H.X. Time-dependent warming amplification over the Tibetan Plateau during the past few decades. Atmos. Sci. Lett. 2020, 21, e998. [Google Scholar] [CrossRef]
- You, Q.L.; Kang, S.C.; Pepin, N.; Flugel, W.A.; Yan, Y.P.; Behrawan, H.; Huang, J. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob. Planet. Chang. 2010, 71, 124–133. [Google Scholar] [CrossRef]
- Li, G.P.; Yu, Z.B.; Wang, W.G.; Ju, Q.; Chen, X. Analysis of the spatial Distribution of precipitation and topography with GPM data in the Tibetan Plateau. Atmos. Res. 2021, 247, 15. [Google Scholar] [CrossRef]
- Yan, Y.P.; You, Q.L.; Wu, F.Y.; Pepin, N.; Kang, S.C. Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Clim. Dyn. 2020, 55, 2405–2419. [Google Scholar] [CrossRef]
- Lu, N. Scale effects of topographic ruggedness on precipitation over Qinghai-Tibet Plateau. Atmos. Sci. Lett. 2019, 20, e904. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.J.; Lu, H.; Qin, J.; Chen, Y.Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 11. [Google Scholar] [CrossRef]
- Ma, J.; Li, H.; Wang, J.; Hao, X.; Shao, D.; Lei, H. Reducing the statistical distribution error in gridded precipitation data for the Tibetan Plateau. J. Hydrometeorol. 2020, 21, 2641–2654. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wang, L.; Li, X.P.; Zhou, J.; Hu, Z.D. An integration of gauge, satellite, and reanalysis precipitation datasets for the largest river basin of the Tibetan Plateau. Earth Syst. Sci. Data 2020, 12, 1789–1803. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Yang, K.; Qi, Y.C.; Zhou, X.; He, J.; Lu, H.; Li, X.; Chen, Y.Y.; Li, X.D.; Zhou, B.R.; et al. TPHiPr: A long-term (1979–2020) high-accuracy precipitation dataset (1/30 degrees, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations. Earth Syst. Sci. Data 2023, 15, 621–638. [Google Scholar] [CrossRef]
- Ding, L.R.; Zhou, J.; Zhang, X.D.; Liu, S.M.; Cao, R.Y. A long-term 0.01 degrees surface air temperature dataset of Tibetan Plateau. Data Brief 2018, 20, 748–752. [Google Scholar] [CrossRef]
- Wu, W.B.; Ma, J.; Meadows, M.E.; Banzhaf, E.; Huang, T.Y.; Liu, Y.F.; Zhao, B. Spatio-temporal changes in urban green space in 107 Chinese cities (1990–2019): The role of economic drivers and policy. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102525. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Arnault, J.; Laux, P.; Ma, N.; Wei, J.H.; Shang, S.S.; Kunstmann, H. Convection-permitting fully coupled WRF-Hydro ensemble simulations in high mountain environment: Impact of boundary layer- and lateral flow parameterizations on land-atmosphere interactions. Clim. Dyn. 2022, 59, 1355–1376. [Google Scholar] [CrossRef]
- Gao, M.L.; Li, Z.H.; Tan, Z.Y.; Liu, Q.; Shen, H.F. Simulating the Response of the Surface Urban Heat Environment to Land Use and Land Cover Changes: A Case Study of Wuhan, China. Remote Sens. 2021, 13, 4495. [Google Scholar] [CrossRef]
- Huang, X.L.; Han, S.; Shi, C.X. Evaluation of Three Air Temperature Reanalysis Datasets in the Alpine Region of the Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 4447. [Google Scholar] [CrossRef]
- Bai, L.; Wen, Y.Q.; Shi, C.X.; Yang, Y.F.; Zhang, F.; Wu, J.; Gu, J.X.; Pan, Y.; Sun, S.; Meng, J.Y. Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data? Remote Sens. 2020, 12, 683. [Google Scholar] [CrossRef]
- Pitman, A.J.; Arneth, A.; Ganzeveld, L. Regionalizing global climate models. Int. J. Climatol. 2012, 32, 321–337. [Google Scholar] [CrossRef]
- Touze-Peiffer, L.; Barberousse, A.; Le Treut, H. The Coupled Model Intercomparison Project: History, uses, and structural effects on climate research. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e648. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Vilasa, L.; Miralles, D.G.; de Jeu, R.A.M.; Dolman, A.J. Global soil moisture bimodality in satellite observations and climate models. J. Geophys. Res. Atmos. 2017, 122, 4299–4311. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Q.; Voisin, N.; Cui, H. Projected impacts of climate change on hydropower potential in China. Hydrol. Earth Syst. Sci. 2016, 20, 3343–3359. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Yang, S.N. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Lun, Y.R.; Liu, L.; Cheng, L.; Li, X.P.; Li, H.; Xu, Z.X. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 2021, 41, 3994–4018. [Google Scholar] [CrossRef]
- Liu, J.F.; Lu, Y.Q. How Well Do CMIP6 Models Simulate the Greening of the Tibetan Plateau? Remote Sens. 2022, 14, 4633. [Google Scholar] [CrossRef]
- Cui, T.; Li, Y.; Yang, L.; Nan, Y.; Li, K.; Tudaji, M.; Hu, H.; Long, D.; Shahid, M.; Mubeen, A.; et al. Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels. Nat. Commun. 2023, 14, 1176. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Bhatia, U.; Tiwari, A.D. Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Sci. Data 2020, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Thrasher, B.; Wang, W.L.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, H.; Pan, X. Integration Dataset of Tibet Plateau Boundary; National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Zheng, D. Datasets of the boundary and area of the Tibetan Plateau. Acta Geogr. Sin. 2014, 69 (Suppl. 1), 65–68. [Google Scholar]
- Zhang, G. Dataset of river basins map over the TP (2016). Geophys. Res. Lett. 2019, 40, 2125–2130. [Google Scholar] [CrossRef]
- Ran, Y.; Wang, L.; Zeng, T.; Ge, C.; Li, H. "One Belt, one Road" Boundary Map of Key Basins in Asia; National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- National, B. 1:250000 River Distribution Data Set of Qaidam River Basin (2000); National Tibetan Plateau Data Center: Beijing, China, 2020; Available online: https://data.tpdc.ac.cn/zh-hans/data/c77dce15-8d92-43e5-ace5-b5d781ff867c (accessed on 27 March 2024).
- FAO. SRTM DEM Data on the Tibetan Plateau (2012); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Xu, X.D.; Dong, L.L.; Zhao, Y.; Wang, Y.J. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chin. Sci. Bull. Chin. 2019, 64, 2830–2841. [Google Scholar] [CrossRef]
- Li, C.Q.; Zuo, Q.J.; Xu, X.D.; Gao, S.T. Water vapor transport around the Tibetan Plateau and its effect on summer rainfall over the Yangtze River valley. J. Meteorol. Res. 2016, 30, 472–482. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.D.; Yang, S.; Zhang, W. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol. 2012, 110, 423–435. [Google Scholar] [CrossRef]
- Davis, M.E.; Thompson, L.G.; Yao, T.D.; Wang, N.L. Forcing of the Asian monsoon on the Tibetan Plateau: Evidence from high-resolution ice core and tropical coral records. J. Geophys. Res. Atmos. 2005, 110, 14. [Google Scholar] [CrossRef]
- Karadan, M.M.; Raju, P.V.S.; Mishra, A. Simulations of Indian summer monsoon using RegCM: A comparison with ERA and GFDL analysis. Theor. Appl. Climatol. 2021, 143, 1381–1391. [Google Scholar] [CrossRef]
- Guo, X.Y.; Wang, L.; Tian, L.D.; Zhou, J.; Wang, Y.W. Possible widths of Indian summer monsoon trajectories in Tibetan Plateau revealed by the direction of maximum summer precipitation decreases in recent decades. Clim. Dyn. 2022, 60, 2315–2330. [Google Scholar] [CrossRef]
- Dorji, S.; Herath, S.; Mishra, B.K.; Chophel, U. Predicting summer monsoon of Bhutan based on SST and teleconnection indices. Meteorol. Atmos. Phys. 2019, 131, 541–551. [Google Scholar] [CrossRef]
- Deka, R.L.; Mahanta, C.; Pathak, H.; Nath, K.K.; Das, S. Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theor. Appl. Climatol. 2013, 114, 61–71. [Google Scholar] [CrossRef]
- Li, X.Y.; Long, D. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach. Remote Sens. Environ. 2020, 248, 111966. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Koppa, A.; Shan, B.Y.; Liu, X.C.; Li, X.P.; Niu, Q.K.; Cheng, L.; Miralles, D. Vegetation greening concurs with increases in dry season water yield over the Upper Brahmaputra River basin. J. Hydrol. 2021, 603, 126981. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change Hum. Policy Dimens. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Korner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Karger, D.N.; Schmatz, D.R.; Dettling, G.; Zimmermann, N.E. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Sci. Data 2020, 7, 248. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Bohner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Data Descriptor: Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 20. [Google Scholar] [CrossRef]
- Hutchinson, M.F.; Gessler, P.E. Splines—more than just a smooth interpolator. Geoderma 1994, 62, 45–67. [Google Scholar] [CrossRef]
- Gao, C.; Booij, M.J.; Xu, Y.P. Assessment of extreme flows and uncertainty under climate change: Disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability. Hydrol. Earth Syst. Sci. 2020, 24, 3251–3269. [Google Scholar] [CrossRef]
- Hoge, M.; Guthke, A.; Nowak, W. The hydrologist’s guide to Bayesian model selection, averaging and combination. J. Hydrol. 2019, 572, 96–107. [Google Scholar] [CrossRef]
- Vrugt, J.; Diks, C.; Clark, M. Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling. Environ. Fluid Mech. 2008, 8, 579–595. [Google Scholar] [CrossRef]
- Radaideh, M.I.; Borowiec, K.; Kozlowski, T. Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics. Reliab. Eng. Syst. Saf. 2019, 189, 357–377. [Google Scholar] [CrossRef]
- Watterson, I.G. Calculation of probability density functions for temperature and precipitation change under global warming. J. Geophys. Res. Atmos. 2008, 113, D12106. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Hansen, J.W. Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef]
- Miao, C.Y.; Su, L.; Sun, Q.H.; Duan, Q.Y. A nonstationary bias-correction technique to remove bias in GCM simulations. J. Geophys. Res. Atmos. 2016, 121, 5718–5735. [Google Scholar] [CrossRef]
- Li, H.B.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Gutowski, W.J.; Decker, S.G.; Donavon, R.A.; Pan, Z.T.; Arritt, R.W.; Takle, E.S. Temporal-spatial scales of observed and simulated precipitation in central U.S. climate. J. Clim. 2003, 16, 3841–3847. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Piccoli, B.; Rossi, F. Generalized Wasserstein Distance and its Application to Transport Equations with Source. Arch. Ration. Mech. Anal. 2014, 211, 335–358. [Google Scholar] [CrossRef]
- Ruschendorf, L. The Wasserstein Distance and approximation theorems. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 1985, 70, 117–129. [Google Scholar] [CrossRef]
- Cho, D.; Yoo, C.; Im, J.; Lee, Y.; Lee, J. Improvement of spatial interpolation accuracy of daily maximum air temperature in urban areas using a stacking ensemble technique. Giscience Remote Sens. 2020, 57, 633–649. [Google Scholar] [CrossRef]
- Vissio, G.; Lembo, V.; Lucarini, V.; Ghil, M. Evaluating the Performance of Climate Models Based on Wasserstein Distance. Geophys. Res. Lett. 2020, 47, e2020GL089385. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, W.; Xie, T.; Wu, X.; Xie, Y.; Feng, S.; Chen, F. Optimization and evaluation of a monthly air temperature and precipitation gridded dataset with a 0.025° spatial resolution in China during 1951–2011. Theor. Appl. Climatol. 2019, 138, 491–507. [Google Scholar] [CrossRef]
- Chen, C.F.; Hu, B.J.; Li, Y.Y. Easy-to-use spatial random-forest-based downscaling-calibration method for producing precipitation data with high resolution and high accuracy. Hydrol. Earth Syst. Sci. 2021, 25, 5667–5682. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Shao, C.; Zhou, X.; Zhao, L.; Chen, Y.; Wu, H. A downscaling approach for constructing high-resolution precipitation dataset over the Tibetan Plateau from ERA5 reanalysis. Atmos. Res. 2021, 256, 105574. [Google Scholar] [CrossRef]
- You, Q.L.; Cai, Z.Y.; Wu, F.Y.; Jiang, Z.H.; Pepin, N.; Shen, S.S.P. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty. Clim. Dyn. 2021, 57, 17–35. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, K.; Lu, H.; He, J.; Sun, J.; Wang, Y. Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities. Atmos. Res. 2021, 264, 9. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.; Wang, Z.Y.; Zhu, X.D.; Tang, H.Y. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 2010, 42, 449–457. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; in press. [Google Scholar]
- Zhang, C.; Tang, Q.; Chen, D. Recent Changes in the Moisture Source of Precipitation over the Tibetan Plateau. J. Clim. 2017, 30, 1807–1819. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.; Lu, Q.; Wang, G. Variations in the Sensible Heating of Tibetan Plateau and Related Effects on Atmospheric Circulation Over South Asia. Asia-Pac. J. Atmos. Sci. 2021, 57, 499–510. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, L.P.; Hou, J.Z.; Steinman, B.A.; He, Y.; Brown, E.T. Westerlies effect in Holocene paleoclimate records from the central Qinghai-Tibet Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 598, 111036. [Google Scholar] [CrossRef]
- Zhao, P.; Li, Y.L.; Jia, C.H.; Che, J.H. Atmospheric Meridional Circulation Between South Asia and Tibetan Plateau Caused by the Change of Planetary Boundary Layer Depth. J. Geophys. Res. Atmos. 2023, 128, e2023JD039506. [Google Scholar] [CrossRef]
- Wu, T.H.; Zhao, L.; Li, R.; Wang, Q.X.; Xie, C.W.; Pang, Q.Q. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. Int. J. Climatol. 2013, 33, 920–930. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, C.J.; Li, Z.C.; Yang, L.W.; Jin, X.; Gao, X.Q. Analysis on the temporal and spatial characteristics of the shallow soil temperature of the Qinghai-Tibet Plateau. Sci. Rep. 2022, 12, 19746. [Google Scholar] [CrossRef]
- Luo, D.L.; Jin, H.J.; He, R.X.; Wang, X.F.; Muskett, R.R.; Marchenko, S.S.; Romanovsky, V.E. Characteristics of Water-Heat Exchanges and Inconsistent Surface Temperature Changes at an Elevational Permafrost Site on the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2018, 123, 10404–10422. [Google Scholar] [CrossRef]
- Xie, Z.H. Review of Qinghai-Tibet Plateau Impacting on Atmospheric Circulation. In Proceedings of the International Conference on Energy Development and Environmental Protection (EDEP), Beijing, China, 11–12 June 2016; pp. 355–359. [Google Scholar]
- Maraun, D.; Knevels, R.; Mishra, A.N.; Truhetz, H.; Bevacqua, E.; Proske, H.; Zappa, G.; Brenning, A.; Petschko, H.; Schaffer, A.; et al. A severe landslide event in the Alpine foreland under possible future climate and land-use changes. Commun. Earth Environ. 2022, 3, 87. [Google Scholar] [CrossRef]
- Ren, Z.; Ma, X.; Wang, K.; Li, Z. Effects of Extreme Precipitation on Runoff and Sediment Yield in the Middle Reaches of the Yellow River. Atmosphere 2023, 14, 1415. [Google Scholar] [CrossRef]
- Touma, D.; Stevenson, S.; Swain, D.L.; Singh, D.; Kalashnikov, D.A.; Huang, X. Climate change increases risk of extreme rainfall following wildfire in the western United States. Sci. Adv. 2022, 8, eabm0320. [Google Scholar] [CrossRef]
- Suhas, D.L.; Ramesh, N.; Kripa, R.M.; Boos, W.R. Influence of monsoon low pressure systems on South Asian disasters and implications for disaster prediction. npj Clim. Atmos. Sci. 2023, 6, 48. [Google Scholar] [CrossRef]
- Araghi, A.; Adamowski, J.F. Assessment of 30 gridded precipitation datasets over different climates on a country scale. Earth Sci. Inform. 2024, 17, 1301–1313. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25 degrees global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, D.; Li, B. Preliminary study on water vapor channel in the lower Brahmaputra River Valley. Sci. China 1987, B, 893–902. [Google Scholar]
- Xu, X.M.; Zhang, X.Q.; Li, X. Evaluation of the Applicability of Three Methods for Climatic Spatial Interpolation in the Hengduan Mountains Region. J. Hydrometeorol. 2023, 24, 35–51. [Google Scholar] [CrossRef]
- Wu, T.W.; Lu, Y.X.; Fang, Y.J.; Xin, X.G.; Li, L.; Li, W.P.; Jie, W.H.; Zhang, J.; Liu, Y.M.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Muller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Ferguglia, O.; von Hardenberg, J.; Palazzi, E. Robustness of precipitation Emergent Constraints in CMIP6 models. Clim. Dyn. 2023, 612, 1439–1450. [Google Scholar] [CrossRef]
Variables | Variable Name | Unit | Physical Meaning |
---|---|---|---|
Precipitation | Pr | mm d−1 | Daily precipitation, both liquid and solid |
Maximum temperature | Tasmax | K | Daily surface (2 m) maximum temperature in one day |
Minimum temperature | Tasmin | K | Daily surface (2 m) minimum temperature in one day |
Name | Altitude (m) | Latitude (°) | Longitude (°) | Year of Initial Observation |
---|---|---|---|---|
Qingshuihe | 4415.4 | 33.80 | 97.13 | 1956 |
Basu | 2589.2 | 30.00 | 99.10 | 1952 |
Derong | 2422.9 | 28.72 | 99.28 | 1960 |
Gaize | 4414.9 | 32.15 | 84.42 | 1973 |
Dingri | 4300.0 | 28.63 | 87.08 | 1959 |
Bomi | 2736.0 | 29.87 | 95.77 | 1955 |
Minhe | 1813.9 | 36.33 | 102.83 | 1955 |
Maqu | 3471.4 | 34.00 | 102.08 | 1967 |
Name | Resolution (°) | Data Time Range | Coverage Area | Variables Used in Present Study |
---|---|---|---|---|
CMFD | 0.1 | 1979–2018 | Mainland of China | Precipitation rate and temperature |
GPQM | 0.1 | 1980–2010 | A square area covers 70° to 99° east and 25° to 41° north | Precipitation |
Modeling Group | Model Name | Approximate Grid Spacing (Latitude × Longitude) |
---|---|---|
Beijing Climate Center (China) | BCC-CSM2-MR | 1.125° × 1.125° |
Bjerknes Centre for Climate Research, Norwegian Meteorological Institute (Norway) | NorESM2-MM | 2.5° × 1.875° |
Max Planck Institute for Meteorology (Germany) | MPI-ESM1-2-HR | 0.9° × 0.9° |
Institute for Numerical Mathematics, Russian Academy of Science (Russia) | INM-CM4-8 | 1.5° × 2° |
Institute Pierre Simon Laplace (France) | IPSL-CM6A-LR | 1.2676° × 2.5° |
Meteorological Research Institute, Japan Meteorological Agency (Japan) | MRI-ESM2-0 | 1.121° × 1.125° |
Geophysical Fluid Dynamics Laboratory (America) | GFDL-ESM4 | 1.25° × 1.00° |
Name | Altitude (m) | Pr (mm d−1) | Tasmax (K) | Tasmin (K) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ANUSPLIN | IDW | OK | ANUSPLIN | IDW | OK | ANUSPLIN | IDW | OK | ||
Qingshuihe | 4415.4 | 0.25 | 0.82 | 0.57 | 1.07 | 7.69 | 5.97 | 2.67 | 8.68 | 7.27 |
Basu | 2589.2 | 0.55 | 1.24 | 0.82 | 0.41 | 8.05 | 13.04 | 0.84 | 6.59 | 9.94 |
Derong | 2422.9 | 0.69 | 1.34 | 0.98 | 2.37 | 8.28 | 4.72 | 1.96 | 8.25 | 3.71 |
Gaize | 4414.9 | 0.24 | 1.05 | 1.08 | 0.39 | 3.66 | 3.51 | 1.46 | 5.95 | 5.94 |
Dingri | 4300.0 | 0.56 | 1.15 | 0.72 | 1.8 | 0.39 | 0.87 | 0.78 | 3.21 | 4.59 |
Bomi | 2736.0 | 1.05 | 1.5 | 1.14 | 2.86 | 3.04 | 0.55 | 1.23 | 4.83 | 1.04 |
Minhe | 1813.9 | 0.39 | 0.63 | 0.63 | 0.39 | 3.11 | 0.52 | 0.66 | 4.74 | 4.2 |
Maqu | 3471.4 | 0.15 | 0.59 | 0.51 | 0.15 | 1.74 | 0.99 | 1.5 | 0.78 | 0.55 |
Average | —— | 0.49 | 1.04 | 0.81 | 1.18 | 4.50 | 3.77 | 1.39 | 5.38 | 4.66 |
Name | Scenarios | Temperature Rise Range | ||
---|---|---|---|---|
1.5 °C | 2.0 °C | 3.0 °C | ||
Indus | SSP2-4.5 | 0.11 | 0.35 | 1.09 |
SSP5-8.5 | 0.13 | 0.10 | 0.51 | |
Mekong | SSP2-4.5 | 0.38 | 0.24 | 1.14 |
SSP5-8.5 | 0.52 | 0.33 | 0.71 | |
Salween | SSP2-4.5 | 0.28 | 0.16 | 1.32 |
SSP5-8.5 | 0.61 | 0.43 | 0.80 | |
Yangtze | SSP2-4.5 | 0.34 | 0.79 | 0.95 |
SSP5-8.5 | 0.05 | 0.38 | 0.91 | |
Yarlung Zangbo | SSP2-4.5 | 0.31 | 0.26 | 0.94 |
SSP5-8.5 | 0.68 | 0.38 | 0.62 | |
Yellow | SSP2-4.5 | 0.09 | 0.56 | 1.15 |
SSP5-8.5 | 0.21 | 0.14 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Song, X.; Lu, F.; Yu, S.; Zhou, Y.; Sun, J. CMIP6 Simulation-Based Daily Surface Air Temperature and Precipitation Projections over the Qinghai-Tibetan Plateau in the 21st Century. Atmosphere 2024, 15, 434. https://doi.org/10.3390/atmos15040434
Wang K, Song X, Lu F, Yu S, Zhou Y, Sun J. CMIP6 Simulation-Based Daily Surface Air Temperature and Precipitation Projections over the Qinghai-Tibetan Plateau in the 21st Century. Atmosphere. 2024; 15(4):434. https://doi.org/10.3390/atmos15040434
Chicago/Turabian StyleWang, Kangming, Xinyi Song, Fan Lu, Songbin Yu, Yuyan Zhou, and Jin Sun. 2024. "CMIP6 Simulation-Based Daily Surface Air Temperature and Precipitation Projections over the Qinghai-Tibetan Plateau in the 21st Century" Atmosphere 15, no. 4: 434. https://doi.org/10.3390/atmos15040434
APA StyleWang, K., Song, X., Lu, F., Yu, S., Zhou, Y., & Sun, J. (2024). CMIP6 Simulation-Based Daily Surface Air Temperature and Precipitation Projections over the Qinghai-Tibetan Plateau in the 21st Century. Atmosphere, 15(4), 434. https://doi.org/10.3390/atmos15040434