Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area
Abstract
:1. Introduction
2. Geological Setting of the Study Area
3. Materials and Methods
3.1. Study House
3.2. Monitoring System
4. Results
4.1. Indoor Radon Monitoring
4.2. Thoron Sniffing and Soil Gas Entry Points
4.3. Total Gamma Radiation and Dose
5. Discussion
6. Conclusions
- Real cases are complex due to the simultaneous interplay of many factors affecting indoor radon. This makes it necessary to study single situation individually.
- Radon sources need to be evaluated and appropriately treated. The geological bedrock has a prevailing effect over the building materials in this study case.
- A silane terminated polymer applied on the walls of a pilot room made of a material with high emission of radon halved indoor concentration, even if soil radon is the primary source.
- Suitable waterproof materials can be successfully tested as radon barriers using the model room approach, proposed in [6].
- The natural ventilation by northerly winds or the forced ventilation of the partition space in room A is advisable to reduce indoor radon below reference levels.
- Dose rate profiles help in defining the risk due to exposure of people to ionising radiation in a medium-geogenic radon potential area, as indicated in the recent European legislation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- IARC (International Agency Research Cancer) Monographs. Radon and Its Decay Products; IARC: Lyon, France, 1988; p. 43. [Google Scholar]
- NCRP (National Council on Radiation Protection and Measurements). Ionizing Radiation Exposure of the Population of the United States; Report n. 160; NCRP: Bethesda, MA, USA, 2009. [Google Scholar]
- Giustini, F.; Ruggiero, L.; Sciarra, A.; Beaubien, S.E.; Graziani, S.; Galli, G.; Pizzino, L.; Tartarello, M.C.; Lucchetti, C.; Sirianni, P.; et al. Radon Hazard in Central Italy: Comparison among Areas with Different Geogenic Radon Potential. Int. J. Environ. Res. Public Health 2022, 19, 666. [Google Scholar] [CrossRef]
- Radulescu, I.; Calin, M.R.; Luca, A.; Röttger, A.; Grossi, C.; Done, V.L.; Ioan, M.R. Inter-comparison of commercial continuous radon monitors responses. Nucl. Inst. Meth Phys. Res. A 2022, 1021, 165927. [Google Scholar] [CrossRef]
- Lucchetti, C.; Galli, G.; Tuccimei, P. Indoor/outdoor air exchange affects indoor radon. The use of a scale model room to develop a mitigation strategy. Adv. Geosci. 2022, 57, 81–88. [Google Scholar] [CrossRef]
- Portaro, M.; Tuccimei, P.; Galli, G.; Soligo, M.; Longoni, C.; Vasquez, D. Testing the properties of radon barrier materials and home ventilation to reduce indoor radon accumulation. Atmosphere 2023, 14, 15. [Google Scholar] [CrossRef]
- Ciotoli, G.; Voltaggio, M.; Tuccimei, P.; Soligo, M.; Pasculli, A.; Beaubien, S.; Bigi, S. Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation. J. Environ. Radioact. 2017, 166, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Neznal, M.; Neznal, M.; Matolin, M.; Barnet, I.; Miksova, J. The New Method for Assessing the Radon Risk of Building Sites, Czech Geol; Survey Special Papers; Czech Geological Survey: Prague, Czech Republic, 2004.
- DECRETO LEGISLATIVO (D.Lgs) n. 101/2020 31 Luglio 2020. Supplemento Ordinario alla “Gazzetta Ufficiale n. 201 del 12 Agosto 2020—Serie Generale. Available online: https://www.gazzettaufficiale.it (accessed on 10 July 2023).
- Long, S.; Fenton, D.; Cremin, M.; Morgan, A. The effectiveness of radon preventive and remedial measures in Irish homes. J. Radiol. Prot. 2013, 33, 141–149. [Google Scholar] [CrossRef]
- Jiranek, M. Sub-slab depressurisation systems used in the Czech Republic and verification of their efficiency. Radiat. Prot. Dosim. 2014, 162, 64–67. [Google Scholar] [CrossRef]
- Fuente, M.; Rábago, D.; Goggins, J.; Fuente, I.; Sainz, C.; Foley, M. Radon mitigation by soil depressurisation case study: Radon concentration and pressure field extension monitoring in a pilot house in Spain. Sci. Total Environ. 2019, 695, 133746. [Google Scholar] [CrossRef] [PubMed]
- Funiciello, R.; Parotto, M. Il substrato sedimentario nell’area dei Colli Albani: Considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino centrale. Geol. Rom. 1978, 17, 233–287. [Google Scholar]
- Faccenna, C.; Funiciello, R.; Mattei, M. Late Pleistocene N–S shear zone along Latium Thyrrenian margin: Structural characters and volcanological implications. Boll. Geofis. Teor. Appl. 1994, 36, 141–144. [Google Scholar]
- Barberi, F.; Buonasorte, G.; Cioni, R.; Fiordelisi, A.; Foresi, L.; Iaccarino, S.; Laurenzi, M.A.; Sbrana, A.; Vernia, A.; Villa, I.M. Plio–Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem. Descr. Carta Geol. D’italia 1994, 49, 77–135. [Google Scholar]
- Peccerillo, A. Plio-Quaternary magmatism in Italy. Episodes 2003, 26, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Nappi, G.; Renzulli, A.; Santi, P.; Gillot, P.Y. Geological evolution and geochronology of the Vulsini Volcanic District (Central Italy). Bull. Soc. Geol. Ital. 1995, 114, 599–613. [Google Scholar]
- Galli, G.; Cannelli, V.; Nardi, A.; Piersanti, A. Implementing soil radon detectors for long term continuous monitoring. Appl. Radiat. Isot. 2019, 153, 108813. [Google Scholar] [CrossRef] [PubMed]
- Integrated Agrometeorological Service of the Lazio Region. Available online: https://www.siarl-lazio.it/ (accessed on 1 October 2022).
- Jílek, K.; Hýža, M.; Kotík, L.; Thomas, J.; Tomášek, L. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague. Radiat. Prot. Dosim. 2014, 160, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Musolff, A.; Weiss, H. Influences of meteorological parameters on indoor radon concentrations (222Rn) excluding the effects of forced ventilation and radon exhalation from soil and building materials. J. Environ. Radioact. 2018, 192, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Sá, J.P.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I. V Radon in Indoor Air: Towards Continuous Monitoring. Sustainability 2022, 14, 1529. [Google Scholar] [CrossRef]
- Taşköprü, C.; İçhedef, M.; Saç, M.M. Diurnal, monthly, and seasonal variations of indoor radon concentrations concerning meteorological parameters. Environ. Monit. Assess. 2022, 195, 25. [Google Scholar] [CrossRef]
- Bekelesi, W.C.; Darko, E.O.; Andam, A.B. Activity concentrations and dose assessment of 226Ra, 228Ra, 232Th, 40K, 222Rn and 220Rn in soil samples from Newmont-Akyem gold mine using gamma-ray spectrometry. Environ. Sci. Technol. 2017, 11, 237–247. [Google Scholar]
- Spasić, D.; Gulan, L. High Indoor Radon Case Study: Influence of Meteorological Parameters and Indication of Radon Prone Area. Atmosphere 2022, 13, 2120. [Google Scholar] [CrossRef]
- Xie, D.; Wu, Y.; Wang, C.; Yu, C.W.; Tian, L.; Wang, H. A study on the three-dimensional unsteady state of indoor radon diffusion under different ventilation conditions. Sustain. Cities Soc. 2021, 66, 102599. [Google Scholar] [CrossRef]
- Felicioni, L.; Jiránek, M.; Vlasatá, B.; Lupíšek, A. An Environmental Evaluation of Ventilation Systems Aimed at Reducing Indoor Radon Concentration. Buildings 2023, 13, 2706. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A. Development of radon transport model in different types of dwellings to assess indoor activity concentration. J. Environ. Radioact. 2021, 227, 106501. [Google Scholar] [CrossRef]
- Sahin, L.; Hafızoğlu, N.; Çetinkaya, H.; Manisa, K.; Bozkurt, E.; Biçer, A. Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey. Isot. Environ. Health Stud. 2017, 53, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumar, A.; Mehra, R. Variation of ambient gamma dose rate and indoor radon/thoron concentration in different villages of Udhampur district, Jammu and Kashmir State, India. Radiat. Protect. Environ. 2017, 40, 133–141. [Google Scholar]
- Lucchetti, C.; Briganti, A.; Castelluccio, M.; Galli, G.; Santilli, S.; Soligo, M.; Tuccimei, P. Integrating radon and thoron flux data with gamma radiation mapping in radon-prone areas. The case of volcanic outcrops in a highly-urbanized city (Roma, Italy). J. Environ. Radioact. 2019, 202, 41–50. [Google Scholar] [CrossRef]
- Cosma, C.; Papp, B.; Cucos, A.; Sainz, C. Testing radon mitigation techniques in a pilot house from Baita-Stei radon prone area (Romania). J. Environ. Radioact. 2015, 140, 141–147. [Google Scholar] [CrossRef]
- Ruggiero, L.; Bigi, S.; Ciotoli, G.; Galli, G.; Giustini, F.; Lombardi, S.; Lucchetti, C.; Pizzino, L.; Sciarra, A.; Sirianni, P.; et al. Relationships between geogenic radon potential and gamma ray maps with indoor radon levels at Caprarola municipality (central Italy). In Extended Abstract at 14th GARMM; European Radon Association: Prague, Czech Republic, 2018. [Google Scholar]
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Report to the General Assembly, Annex B: Exposures from Natural Radiation Sources; UNSCEAR: New York, NY, USA, 2000. [Google Scholar]
Activity | Date |
---|---|
Beginning of radon monitoring in rooms A and B | 12 October 2022 |
Replacement of new window frames in room A to improve thermal insulation | From 30 November to 2 December 2022 |
Application of Aquaflex S1K on the inner walls of room A | From 8 December to 10 December 2022 |
Identification and sealing of radon entry points in room A | From mid-December 2022 to mid-January 2023 |
Drilling two holes in the NW external wall behind the cavity created by the bricks partition of room A | 15 January 2023 |
End of radon monitoring in room B | 20 February 2023 |
Drilling a third hole on the NE external wall behind the cavity of room A | 2 March 2023 |
End of radon monitoring in room A | 13 April 2023 |
Segment | Period | Room A | Room B | ||
---|---|---|---|---|---|
Average 222Rn | Stand. Dev. | Average 222Rn | Stand. Dev. | ||
Bq m−3 | Bq m−3 | Bq m−3 | Bq m−3 | ||
1 | 12 October–11 November | 286 | 202 | 167 | 84 |
2 | 12 November–30 November | 976 | 562 | 585 | 269 |
3 | 1 December–16 December | 2776 | 1768 | 970 | 202 |
4 | 17 December–15 January | 1475 | 1092 | 807 | 120 |
5 | 16 January–19 February | 1572 | 1013 | 851 | 239 |
6 | 20 February–3 March | 833 | 422 | - | - |
7 | 4 March–13 April | 670 | 442 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portaro, M.; Rocchetti, I.; Tuccimei, P.; Galli, G.; Soligo, M.; Ciotoli, G.; Longoni, C.; Vasquez, D.; Sola, F. Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area. Atmosphere 2024, 15, 425. https://doi.org/10.3390/atmos15040425
Portaro M, Rocchetti I, Tuccimei P, Galli G, Soligo M, Ciotoli G, Longoni C, Vasquez D, Sola F. Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area. Atmosphere. 2024; 15(4):425. https://doi.org/10.3390/atmos15040425
Chicago/Turabian StylePortaro, Manuela, Ilaria Rocchetti, Paola Tuccimei, Gianfranco Galli, Michele Soligo, Giancarlo Ciotoli, Cristina Longoni, Dino Vasquez, and Federica Sola. 2024. "Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area" Atmosphere 15, no. 4: 425. https://doi.org/10.3390/atmos15040425
APA StylePortaro, M., Rocchetti, I., Tuccimei, P., Galli, G., Soligo, M., Ciotoli, G., Longoni, C., Vasquez, D., & Sola, F. (2024). Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area. Atmosphere, 15(4), 425. https://doi.org/10.3390/atmos15040425