Navigating the Aerosolized Frontier: A Comprehensive Review of Bioaerosol Research Post-COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Databases Used
2.2. Information Analysis System
2.3. Information Detection System
3. Result and Discussion
3.1. Analysis of Research Trends
3.2. Sources of Bioaerosols
3.3. Methods of Sampling
3.4. Detection Techniques for Bioaerosols
3.5. The Development of Mathematical Models in Pathogen Transmission Prediction
3.6. Application of eDNA Technology on Bioaerosol Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | Corona Virus Disease 2019 |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus-2 |
eDNA | environmental DNA |
WoS | Web of Science |
SARS | Severe Acute Respiratory Syndrome |
MERS | Middle East Respiratory Syndrome |
RT-PCR | Real-time PCR |
qPCR | Quantitative PCR |
IAP | indoor air pollution |
CFU | colony-forming units |
mEP | miniaturized electrostatic precipitator |
REPS | Rutgers Electrostatic Passive Sampler |
AGI | all-glass impinger |
dPCR | digital PCR |
ddPCR | droplet digital PCR |
MALDI-TOF MS | Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry |
PCR | Polymerase chain reaction |
SIR | Susceptible-Infected-Removed |
FMD | foot-and-mouth disease |
PNC | Particle Number Concentration |
MAPE | Mean Absolute Percentage Error |
STEM | Sulfur Transport and Emission Model |
WRF | Weather Research and Forecasting |
BC | Black Carbon |
CFD | Computational Fluid Dynamics |
ARGs | antibiotic resistance genes |
iDNA | intracellular DNA |
exDNA | extracellular DNA |
NGS | next-generation sequencing |
HTS | high-throughput screening |
References
- Barth, E.F.; Reponen, T.; Succop, P. Evaluation of Bioaerosol Components, Generation Factors, and Airborne Transport Associated with Lime Treatment of Contaminated Sediment. J. Air Waste Manag. Assoc. 2009, 59, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Breen, A.; Pillai, S.C. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater. Sci. Eng. 2018, 4, 2237–2275. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.I. An overview of the effect of bioaerosol size in coronavirus disease 2019 transmission. Int. J. Health Plan. Manag. 2021, 36, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P.A.; Delort, A.M.; Pöschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A.I.; Morris, C.E. Microbiology and atmospheric processes: Chemical interactions of primary biological aerosols. Biogeosciences 2008, 5, 1073–1084. [Google Scholar] [CrossRef]
- Estillore, A.D.; Trueblood, J.V.; Grassian, V.H. Atmospheric chemistry of bioaerosols: Heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 2016, 7, 6604–6616. [Google Scholar] [CrossRef] [PubMed]
- Renninger, N.; Nastasi, N.; Bope, A.; Cochran, S.J.; Haines, S.R.; Balasubrahmaniam, N.; Stuart, K.; Bivins, A.; Bibby, K.; Hull, N.M.; et al. Indoor Dust as a Matrix for Surveillance of COVID-19. mSystems 2021, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Mahmoodpoor, A.; Kolahi, A.A.; Nejadghaderi, S.A.; Sullman, M.J.M.; Mansournia, M.A.; Ansarin, K.; Collins, G.S.; Kaufman, J.S.; Abdollahi, M. Global burden of lower respiratory infections during the last three decades. Front. Public Health 2023, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Fahlgren, C.; Bratbak, G.; Sandaa, R.A.; Thyrhaug, R.; Zweifel, U.L. Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia 2011, 27, 107–120. [Google Scholar] [CrossRef]
- Haig, C.W.; Mackay, W.G.; Walker, J.T.; Williams, C. Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. J. Hosp. Infect. 2016, 93, 242–255. [Google Scholar] [CrossRef]
- Chawla, H.; Anand, P.; Garg, K.; Bhagat, N.; Varmani, S.G.; Bansal, T.; McBain, A.J.; Marwah, R.G. A comprehensive review of microbial contamination in the indoor environment: Sources, sampling, health risks, and mitigation strategies. Front. Public Health 2023, 11, 25. [Google Scholar] [CrossRef]
- Rajapaksha, P.; Elbourne, A.; Gangadoo, S.; Brown, R.; Cozzolino, D.; Chapman, J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019, 144, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, P.S.; Tripathee, L.; Kang, S.C. Modification and coupled use of technologies are an essential envisioned need for bioaerosol study—An emerging public health concern. Fundamental Res. 2022, 2, 218–221. [Google Scholar] [CrossRef]
- Koopman, J. Modeling infection transmission. Annu. Rev. Public Health 2004, 25, 303–326. [Google Scholar] [CrossRef] [PubMed]
- Glasser, J.; Meltzer, M.; Levint, B. Mathematical modeling and public policy: Responding to health crises. Emerg. Infect. Dis. 2004, 10, 2050–2051. [Google Scholar] [CrossRef]
- Kumar, P.; Sobhanan, J.; Takano, Y.; Biju, V. Molecular recognition in the infection, replication, and transmission of COVID-19-causing SARS-CoV-2: An emerging interface of infectious disease, biological chemistry, and nanoscience. NPG Asia Mater. 2021, 13, 14. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Smither, S.J.; Eastaugh, L.S.; Lever, M.S. Comparison of Aerosol Stability of Different Variants of Ebola Virus and Marburg Virus and Virulence of Aerosolised Ebola Virus in an Immune-Deficient Mouse. Viruses 2022, 14, 12. [Google Scholar] [CrossRef]
- Fink, J.N. Humidifier fever, contaminated HVAC and hypersensitivity pneumonitis. Indoor Air-Int. J. Indoor Air Qual. Clim. 1998, 8, 56–58. [Google Scholar] [CrossRef]
- Bao, L.L.; Xu, L.L.; Zhu, H.; Deng, W.; Chen, T.; Lv, Q.; Li, F.D.; Yuan, J.; Xu, Y.F.; Huang, L.; et al. Transmission of H7N9 influenza virus in mice by different infective routes. Virol. J. 2014, 11, 9. [Google Scholar] [CrossRef]
- Morçöl, T.; Weidner, J.M.; Mehta, A.; Bell, S.J.D.; Block, T. Calcium Phosphate Particles as Pulmonary Delivery System for Interferon-α in Mice. AAPS PharmSciTech 2018, 19, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Smither, S.J.; Eastaugh, L.S.; Steward, J.A.; Nelson, M.; Lenk, R.P.; Lever, M.S. Post-exposure efficacy of Oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antivir. Res. 2014, 104, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Dash, P.K.; Gorantla, S.; Poluektova, L.; Hasan, M.; Waight, E.; Zhang, C.; Markovic, M.; Edagwa, B.; Machhi, J.; Olson, K.E.; et al. Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Arigela, R.; Thyagarajan, S.; Raghunathan, R. Comparison and evaluation of enumeration methods for measurement of fungal spore emission. J. Aerosol. Sci. 2022, 165, 15. [Google Scholar] [CrossRef]
- Kawana, K.; Matsumoto, K.; Taketani, F.; Miyakawa, T.; Kanaya, Y. Fluorescent biological aerosol particles over the central Pacific Ocean: Covariation with ocean surface biological activity indicators. Atmos. Chem. Phys. 2021, 21, 15969–15983. [Google Scholar] [CrossRef]
- Kim, K.Y.; Park, J.B.; Jang, G.Y.; Kim, C.N.; Lee, K.J. Assessment of bioaerosols in the public buildings of Korea. Indoor Built Environ. 2007, 16, 465–471. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xiu, L.S.; Binder, R.A.; Toh, T.H.; Lee, J.S.Y.; Ting, J.; Than, S.T.; Qi, W.H.; Coleman, K.K.; Perera, D.; et al. A pan-coronavirus RT-PCR assay for rapid viral screening of animal, human, and environmental specimens. One Health 2021, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Géry, A.; Basset, B.; Gosselin, M.; Seguin, V.; Bonhomme, J.; Garon, D. Monitoring of sterigmatocystin biosynthesis using RT-qPCR in airborne Aspergillus species of the series Versicolores. J. Microbiol. Methods 2022, 202, 10. [Google Scholar] [CrossRef]
- Dumont-Leblond, N.; Duchaine, C.; Veillette, M.; Pen, V.; Bergevin, M. A case of primary COVID-19 pneumonia: Plausible airborne transmission of SARS-CoV-2. Eur. J. Med. Res. 2022, 27, 6. [Google Scholar] [CrossRef]
- Nanehkaran, Y.A.; Zhu, L.C.; Azarafza, M.; Talaei, S.; Xu, J.X.; Chen, J.D.; Derakhshani, R. The predictive model for COVID-19 pandemic plastic pollution by using deep learning method. Sci. Rep. 2023, 13, 14. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, J.M.; Mael, L.E.; Prather, K.A.; Amaro, R.E.; Grassian, V.H. Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry. ACS Central Sci. 2018, 4, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.P.; Li, L.; Wang, Y.; Ma, J.W.; Li, P.Y.; Han, C.; Liu, J.X. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review. Front. Environ. Sci. Eng. 2021, 15, 16. [Google Scholar] [CrossRef]
- Alsante, A.N.; Thornton, D.C.O.; Brooks, S.D. Ocean Aerobiology. Front. Microbiol. 2021, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Dueker, M.E.; O’Mullan, G.D.; Martínez, J.M.; Juhl, A.R.; Weathers, K.C. Onshore Wind Speed Modulates Microbial Aerosols along an Urban Waterfront. Atmosphere 2017, 8, 14. [Google Scholar] [CrossRef]
- Jabeen, R.; Kizhisseri, M.I.; Mayanaik, S.N.; Mohamed, M.M. Bioaerosol assessment in indoor and outdoor environments: A case study from India. Sci. Rep. 2023, 13, 12. [Google Scholar] [CrossRef]
- Mentese, S.; Arisoy, M.; Rad, A.Y.; Güllü, G. Bacteria and Fungi Levels in Various Indoor and Outdoor Environments in Ankara, Turkey. Clean-Soil Air Water 2009, 37, 487–493. [Google Scholar] [CrossRef]
- Xu, P.C.; Zhang, C.M.; Mou, X.; Wang, X.C.C. Bioaerosol in a typical municipal wastewater treatment plant: Concentration, size distribution, and health risk assessment. Water Sci. Technol. 2020, 82, 1547–1559. [Google Scholar] [CrossRef]
- Li, M.F.; Qi, J.H.; Zhang, H.D.; Huang, S.; Li, L.; Gao, D.M. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci. Total Environ. 2011, 409, 3812–3819. [Google Scholar] [CrossRef]
- Yang, L.; Shen, Z.X.; Wang, D.W.; Wei, J.Q.; Wang, X.; Sun, J.; Xu, H.M.; Cao, J.J. Diurnal Variations of Size-Resolved Bioaerosols During Autumn and Winter Over a Semi-Arid Megacity in Northwest China. GeoHealth 2021, 5, 11. [Google Scholar] [CrossRef]
- Huertas, M.E.; Acevedo-Barrios, R.L.; Rodríguez, M.; Gaviria, J.; Arana, R.; Arciniegas, C. Identification and Quantification of Bioaerosols in a Tropical Coastal Region: Cartagena de Indias, Colombia. Aerosol. Sci. Eng. 2018, 2, 206–215. [Google Scholar] [CrossRef]
- Kowalski, M.; Pastuszka, J.S.; Braszewska, A.; Cyrys, J.; Bragoszewska, E. Airborne Bacteria in Gliwice-The Industrialized City in Poland. Atmosphere 2022, 13, 17. [Google Scholar] [CrossRef]
- Brooks, J.P.; Tanner, B.D.; Josephson, K.L.; Gerba, C.P.; Haas, C.N.; Pepper, I.L. A national study on the residential impact of biological aerosols from the land application of biosolids. J. Appl. Microbiol. 2005, 99, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhou, J.F.; Wang, C.; Meng, G.; Li, Y.F.; Jarin, M.; Wu, Z.Y.; Xie, X. Airborne pathogenic microorganisms and air cleaning technology development: A review. J. Hazard. Mater. 2022, 424, 11. [Google Scholar] [CrossRef]
- Banerjee, S.; van der Heijden, M.G.A. Soil microbiomes and one health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef]
- Hall, R.J.; Altizer, S.; Bartel, R.A. Greater migratory propensity in hosts lowers pathogen transmission and impacts. J. Anim. Ecol. 2014, 83, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Radon, K.; Monso, E.; Weber, C.; Danuser, B.; Iversen, M.; Opravil, U.; Donham, K.; Hartung, J.; Pedersen, S.; Garz, S.; et al. Prevalence and risk factors for airway diseases in farmers—Summary of results of the European Farmers’ Project. Ann. Agric. Environ. Med. 2002, 9, 207–213. [Google Scholar]
- Sykes, P.; Jones, K.; Wildsmith, J.D. Managing the potential public health risks from bioaerosol liberation at commercial composting sites in the UK: An analysis of the evidence base. Resour. Conserv. Recycl. 2007, 52, 410–424. [Google Scholar] [CrossRef]
- Blatny, J.M.; Reif, B.A.P.; Skogan, G.; Andreassen, O.; Hoiby, E.A.; Ask, E.; Waagen, V.; Aanonsen, D.; Aaberge, I.S.; Caugant, D.A. Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant. Environ. Sci. Technol. 2008, 42, 7360–7367. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.R.; Xu, X.C. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 16. [Google Scholar] [CrossRef]
- Zhao, X.W.; Liu, S.M.; Yin, Y.G.; Zhang, T.F.; Chen, Q.Y. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. Indoor Air 2022, 32, 14. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Pommier, T.; Yin, Y.; Wang, J.N.; Gu, S.H.; Jousset, A.; Keuskamp, J.; Wang, H.G.; Wei, Z.; Xu, Y.C.; et al. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. ISME J. 2022, 16, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic host diversity increases in human-dominated ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef]
- Stetzenbach, L.D.; Buttner, M.P.; Cruz, P. Detection and enumeration of airborne biocontaminants. Curr. Opin. Biotechnol. 2004, 15, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.; Dutta, M.; Marques, G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 2020, 30, 12. [Google Scholar] [CrossRef]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccia, J. Human Occupancy as a Source of Indoor Airborne Bacteria. PLoS ONE 2012, 7, 10. [Google Scholar] [CrossRef]
- Barberán, A.; Dunn, R.R.; Reich, B.J.; Pacifici, K.; Laber, E.B.; Menninger, H.L.; Morton, J.M.; Henley, J.B.; Leff, J.W.; Miller, S.L.; et al. The ecology of microscopic life in household dust. Proc. R. Soc. B-Biol. Sci. 2015, 282, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Mahnert, A.; Moissl-Eichinger, C.; Berg, G. Microbiome interplay: Plants alter microbial abundance and diversity within the built environment. Front. Microbiol. 2015, 6, 11. [Google Scholar] [CrossRef]
- Cho, S.J.; Cox-Ganser, J.M.; Park, J.H. Observational scores of dampness and mold associated with measurements of microbial agents and moisture in three public schools. Indoor Air 2016, 26, 168–178. [Google Scholar] [CrossRef]
- Liu, M.; Gan, Z.F.; Shen, B.Y.; Liu, L.M.; Zeng, W.M.; Li, Q.S.; Liu, H. Occupants contribute to pathogens and probiotics in indoor environments. Build. Environ. 2022, 213, 8. [Google Scholar] [CrossRef]
- Stadnytskyi, V.; Anfinrud, P.; Bax, A. Breathing, speaking, coughing or sneezing: What drives transmission of SARS-CoV-2? J. Intern. Med. 2021, 290, 1010–1027. [Google Scholar] [CrossRef] [PubMed]
- Mäki, J.M.; Kirjavainen, P.V.; Täubel, M.; Piippo-Savolainen, E.; Backman, K.; Hyvärinen, A.; Tuoresmäki, P.; Jayaprakash, B.; Heinrich, J.; Herberth, G.; et al. Associations between dog keeping and indoor dust microbiota. Sci. Rep. 2021, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Kelley, S.T.; Gilbert, J.A. Studying the microbiology of the indoor environment. Genome Biol. 2013, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Mor, S. Phytoremediation potential of indoor plants in reducing air pollutants. Front. Sustain. Cities 2022, 4, 14. [Google Scholar] [CrossRef]
- Schulz, J.; Formosa, L.; Seedorf, J.; Hartung, J. Measurement of culturable airborne staphylococci downwind from a naturally ventilated broiler house. Aerobiologia 2011, 27, 311–318. [Google Scholar] [CrossRef]
- Masclaux, F.G.; Sakwinska, O.; Charriere, N.; Semaani, E.; Oppliger, A. Concentration of Airborne Staphylococcus aureus (MRSA and MSSA), Total Bacteria, and Endotoxins in Pig Farms. Ann. Occup. Hyg. 2013, 57, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Passi, A.; Nagendra, S.M.S.; Maiya, M.P. Assessment of exposure to airborne aerosol and bio-aerosol particles and their deposition in the respiratory tract of subway metro passengers and workers. Atmos. Pollut. Res. 2021, 12, 12. [Google Scholar] [CrossRef]
- Herr, C.E.W.; zur Nieden, A.; Jankofsky, M.; Stilianakis, N.I.; Boedeker, R.H.; Eikmann, T.F. Effects of bioaerosol polluted outdoor air on airways of residents: A cross sectional study. Occup. Environ. Med. 2003, 60, 336–342. [Google Scholar] [CrossRef]
- Mescioglu, E.; Paytan, A.; Mitchell, B.W.; Griffin, D.W. Efficiency of bioaerosol samplers: A comparison study. Aerobiologia 2021, 37, 447–459. [Google Scholar] [CrossRef]
- Verreault, D.; Moineau, S.; Duchaine, C. Methods for sampling of airborne viruses. Microbiol. Mol. Biol. Rev. 2008, 72, 413–444. [Google Scholar] [CrossRef]
- Markel, T.A.; Gormley, T.; Greeley, D.; Ostojic, J.; Wagner, J. Wearing long sleeves while prepping a patient in the operating room decreases airborne contaminants. Am. J. Infect. Control 2018, 46, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Manibusan, S.; Mainelis, G. Passive bioaerosol samplers: A complementary tool for bioaerosol research. A review. J. Aerosol. Sci. 2022, 163, 16. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Frank, J.F. Evaluation of Air Samplers for Recovery of Artificially Generated Aerosols of Pure Cultures in a Controlled Environment. J. Food Prot. 1989, 52, 560–563. [Google Scholar] [CrossRef]
- Kilburg-Basnyat, B.; Peters, T.M.; Perry, S.S.; Thorne, P.S. Electrostatic dust collectors compared to inhalable samplers for measuring endotoxin concentrations in farm homes. Indoor Air 2016, 26, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Redmann, R.K.; Beddingfield, B.J.; Spencer, S.; Chirichella, N.R.; Henley, J.L.; Hager, W.; Roy, C.J. A Miniaturized Electrostatic Precipitator Respirator Effectively Removes Ambient SARS-CoV-2 Bioaerosols. Viruses 2022, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Therkorn, J.; Thomas, N.; Scheinbeim, J.; Mainelis, G. Field performance of a novel passive bioaerosol sampler using polarized ferroelectric polymer films. Aerosol. Sci. Technol. 2017, 51, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Therkorn, J.; Thomas, N.; Calderón, L.; Scheinbeim, J.; Mainelis, G. Design and development of a passive bioaerosol sampler using polarized ferroelectric polymer film. J. Aerosol. Sci. 2017, 105, 128–144. [Google Scholar] [CrossRef]
- Angel, D.M.; Gao, D.; DeLay, K.; Lin, E.Z.; Eldred, J.; Arnold, W.; Santiago, R.; Redlich, C.; Martinello, R.A.; Sherman, J.D.; et al. Development and Application of a Polydimethylsiloxane-Based Passive Air Sampler to Assess Personal Exposure to SARS-CoV-2. Environ. Sci. Technol. Lett. 2022, 9, 153–159. [Google Scholar] [CrossRef]
- Pan, J.; Hawks, S.A.; Prussin, A.J.; Duggal, N.K.; Marr, L.C. SARS-CoV-2 on Surfaces and HVAC Filters in Dormitory Rooms. Environ. Sci. Technol. Lett. 2022, 9, 71–76. [Google Scholar] [CrossRef]
- Mainelis, G. Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol. Sci. Technol. 2020, 54, 496–519. [Google Scholar] [CrossRef]
- Chang, C.W.; Lin, M.H.; Huang, S.H.; Horng, Y.J. Parameters affecting recoveries of viable Staphylococcus aureus bioaerosols in liquid-based samplers. J. Aerosol. Sci. 2019, 136, 82–90. [Google Scholar] [CrossRef]
- Chen, Y.C.; Wang, I.J.; Cheng, C.C.; Wu, Y.C.; Bai, C.H.; Yu, K.P. Effect of selected sampling media, flow rate, and time on the sampling efficiency of a liquid impinger packed with glass beads for the collection of airborne viruses. Aerobiologia 2021, 37, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Q.; Wei, K.; Wu, Y.; Shen, F.X.; Chen, Q.; Li, M.Z.; Yao, M.S. Enhancing Bioaerosol Sampling by Andersen Impactors Using Mineral-Oil-Spread Agar Plate. PLoS ONE 2013, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monedero, M.A.; Stentiford, E.I. Generation and dispersion of airborne microorganisms from composting facilities. Process Saf. Environ. Protect. 2003, 81, 166–170. [Google Scholar] [CrossRef]
- Li, J.Y.; Leavey, A.; Wang, Y.; O’Neil, C.; Wallace, M.A.; Burnham, C.A.D.; Boon, A.C.M.; Babcock, H.; Biswas, P. Comparing the performance of 3 bioaerosol samplers for influenza virus. J. Aerosol. Sci. 2018, 115, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Chen, B.T.; Han, B.C.; Liu, A.C.Y.; Hung, P.C.; Chen, C.Y.; Chao, H.J. Field Evaluation of Personal Sampling Methods for Multiple Bioaerosols. PLoS ONE 2015, 10, 19. [Google Scholar] [CrossRef]
- Lemieux, J.; Veillette, M.; Mbareche, H.; Duchaine, C. Re-aerosolization in liquid-based air samplers induces bias in bacterial diversity. Aerosol. Sci. Technol. 2019, 53, 1244–1260. [Google Scholar] [CrossRef]
- Bekking, C.; Yip, L.; Groulx, N.; Doggett, N.; Finn, M.; Mubareka, S. Evaluation of bioaerosol samplers for the detection and quantification of influenza virus from artificial aerosols and influenza virus-infected ferrets. Influenza Other Respir. Viruses 2019, 13, 564–573. [Google Scholar] [CrossRef]
- Tolchinsky, A.D.; Sigaev, V.I.; Varfolomeev, A.N.; Uspenskaya, S.N.; Cheng, Y.S.; Su, W.C. Performance evaluation of two personal bioaerosol samplers. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2011, 46, 1690–1698. [Google Scholar] [CrossRef]
- Ramuta, M.D.; Newman, C.M.; Brakefield, S.F.; Stauss, M.R.; Wiseman, R.W.; Kita-Yarbro, A.; O’Connor, E.J.; Dahal, N.; Lim, A.; Poulsen, K.P.; et al. SARS-CoV-2 and other respiratory pathogens are detected in continuous air samples from congregate settings. Nat. Commun. 2022, 13, 14. [Google Scholar] [CrossRef]
- Mbareche, H.; Morawska, L.; Duchaine, C. On the interpretation of bioaerosol exposure measurements and impacts on health. J. Air Waste Manage. Assoc. 2019, 69, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Van Leuken, J.P.G.; Swart, A.N.; Havelaar, A.H.; Van Pul, A.; Van der Hoek, W.; Heederik, D. Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock—A review to inform risk assessment studies. Microb. Risk Anal. 2016, 1, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P.; Robertson, S.; Gay, R.; Hansell, A.L.; Gant, T.W. A systematic review of the public health risks of bioaerosols from intensive farming. Int. J. Hyg. Environ. Health 2018, 221, 134–173. [Google Scholar] [CrossRef]
- Kabir, E.; Azzouz, A.; Raza, N.; Bhardwaj, S.K.; Kim, K.H.; Tabatabaei, M.; Kukkar, D. Recent Advances in Monitoring, Sampling, and Sensing Techniques for Bioaerosols in the Atmosphere. ACS Sens. 2020, 5, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, P.S.; Tripathee, L.; Chen, P.F.; Kang, S.C. Linking the conventional and emerging detection techniques for ambient bioaerosols: A review. Rev. Environ. Sci. Bio-Technol. 2019, 18, 495–523. [Google Scholar] [CrossRef]
- Zhai, T.T.; Wei, Y.H.; Wang, L.H.; Li, J.; Fan, C.H. Advancing pathogen detection for airborne diseases. Fundam. Res. 2023, 3, 520–524. [Google Scholar] [CrossRef]
- Ghosh, B.; Lal, H.; Srivastava, A. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ. Int. 2015, 85, 254–272. [Google Scholar] [CrossRef]
- Park, J.W.; Park, C.W.; Lee, S.H.; Hwang, J. Fast Monitoring of Indoor Bioaerosol Concentrations with ATP Bioluminescence Assay Using an Electrostatic Rod-Type Sampler. PLoS ONE 2015, 10, 13. [Google Scholar] [CrossRef]
- King, M.D.; Lacey, R.E.; Pak, H.; Fearing, A.; Ramos, G.; Baig, T.; Smith, B.; Koustova, A. Assays and enumeration of bioaerosols-traditional approaches to modern practices. Aerosol. Sci. Technol. 2020, 54, 611–633. [Google Scholar] [CrossRef]
- Lodders, N.; Kämpfer, P. A combined cultivation and cultivation-independent approach shows high bacterial diversity in water-miscible metalworking fluids. Syst. Appl. Microbiol. 2012, 35, 246–252. [Google Scholar] [CrossRef]
- Auty, M.A.E.; Gardiner, G.E.; McBrearty, S.J.; O’Sullivan, E.O.; Mulvihill, D.M.; Collins, J.K.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P. Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl. Environ. Microbiol. 2001, 67, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Calis, A.; Luo, Y.; Chen, C.; Lutton, M.; Rivenson, Y.; Lin, X.; Koydemir, H.C.; Zhang, Y.B.; Wang, H.D.; et al. Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning. ACS Photonics 2018, 5, 4617–4627. [Google Scholar] [CrossRef]
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus Ser. B-Chem. Phys. Meteorol. 2012, 64, 58. [Google Scholar] [CrossRef]
- Costa, S.C.; Machado, A.P.; Teixeira, C.; Cerqueira, L.; Rodrigues, T.; Ribeiro, M.; Moucho, M. Group B Streptococcus rectovaginal colonization screening on term pregnancies: Culture or polymerase chain reaction? J. Matern.-Fetal Neonatal Med. 2023, 36, 7. [Google Scholar] [CrossRef] [PubMed]
- Muldrew, K.L. Molecular diagnostics of infectious diseases. Curr. Opin. Pediatr. 2009, 21, 102–111. [Google Scholar] [CrossRef]
- Hinz, K.P.; Greweling, M.; Drews, F.; Spengler, B. Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles. J. Am. Soc. Mass Spectrom. 1999, 10, 648–660. [Google Scholar] [CrossRef]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.E.; Rolain, J.M.; Raoult, D. Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef]
- Tripathi, A.; Jabbour, R.E.; Guicheteau, J.A.; Christesen, S.D.; Emge, D.K.; Fountain, A.W.; Bottiger, J.R.; Emmons, E.D.; Snyder, A.P. Bioaerosol Analysis with Raman Chemical Imaging Microspectroscopy. Anal. Chem. 2009, 81, 6981–6990. [Google Scholar] [CrossRef]
- Hess, C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem. Soc. Rev. 2021, 50, 3519–3564. [Google Scholar] [CrossRef]
- Sengupta, A.; Laucks, M.L.; Dildine, N.; Drapala, E.; Davis, E.J. Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS). J. Aerosol. Sci. 2005, 36, 651–664. [Google Scholar] [CrossRef]
- Han, Y.Y.; Gu, Y.; Zhang, A.C.; Lo, Y.H. Review: Imaging technologies for flow cytometry. Lab. Chip. 2016, 16, 4639–4647. [Google Scholar] [CrossRef] [PubMed]
- Gala de Pablo, J.; Lindley, M.; Hiramatsu, K.; Goda, K. High-Throughput Raman Flow Cytometry and Beyond. Accounts Chem. Res. 2021, 54, 2132–2143. [Google Scholar] [CrossRef]
- Fung, A.O.; Mykhaylova, N. Analysis of Airborne Biomarkers for Point-of-Care Diagnostics. JALA 2014, 19, 225–247. [Google Scholar] [CrossRef] [PubMed]
- Usachev, E.V.; Agranovski, E.; Usacheva, O.V.; Agranovski, I.E. Multiplexed Surface Plasmon Resonance based real time viral aerosol detection. J. Aerosol. Sci. 2015, 90, 136–143. [Google Scholar] [CrossRef]
- Li, L.; Wexler, A.S.; Li, X.; Hu, L.G.; Jiang, G.B. In Situ Characterization of Bioaerosols at the Single-Particle Level Using Single-Particle Mass Spectrometry: A Promising Tool for Defending Human Health against Bioaerosol Transmission. Anal. Chem. 2023, 95, 10839–10843. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.Y.; Zhao, B.C.; Zhang, X.; Zhu, W.; Shen, A.G. “Dramatic Growth” of Microbial Aerosols for Visualization and Accurate Counting of Bioaerosols. Anal. Chem. 2023, 95, 13537–13545. [Google Scholar] [CrossRef]
- Yousefi, H.; Mahmud, A.; Chang, D.R.; Das, J.; Gomis, S.; Chen, J.B.; Wang, H.S.; Been, T.; Yip, L.; Coomes, E.; et al. Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing. J. Am. Chem. Soc. 2021, 143, 1722–1727. [Google Scholar] [CrossRef]
- Tian, J.H.; Yan, C.; Alcega, S.G.; Hassard, F.; Tyrrel, S.; Coulon, F.; Nasir, Z.A. Detection and characterization of bioaerosol emissions from wastewater treatment plants: Challenges and opportunities. Front. Microbiol. 2022, 13, 15. [Google Scholar] [CrossRef]
- Nenoff, P.; Reinel, D.; Krüger, C.; Grob, H.; Mugisha, P.; Süss, A.; Mayser, P. Tropical and travel-related dermatomycoses. Part 2: Cutaneous infections due to yeasts, moulds, and dimorphic fungi. Hautarzt 2015, 66, 522–532. [Google Scholar] [CrossRef]
- Addison-Smith, B.; Milic, A.; Dwarakanath, D.; Simunovic, M.; Van Haeften, S.; Timbrell, V.; Davies, J.M. Medium-Term Increases in Ambient Grass Pollen Between 1994–1999 and 2016–2020 in a Subtropical Climate Zone. Front. Allergy 2021, 2, 10. [Google Scholar] [CrossRef]
- González-Parrado, Z.; Valencia-Barrera, R.M.; Vega-Maray, A.M.; Fuertes-Rodríguez, C.R.; Fernández-González, D. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain. Int. J. Biometeorol. 2014, 58, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Sweileh, W.M. Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Global. Health 2022, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.W.; Li, Y.P.; Bai, W.Y.; Hou, J.L.; Ma, T.F.; Zeng, X.L.; Zhang, L.Y.; An, T.C. The source and transport of bioaerosols in the air: A review. Front. Environ. Sci. Eng. 2021, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Janssen, R.H.H.; Heald, C.L.; Steiner, A.L.; Perring, A.E.; Huffman, J.A.; Robinson, E.S.; Twohy, C.H.; Ziemba, L.D. Drivers of the fungal spore bioaerosol budget: Observational analysis and global modeling. Atmos. Chem. Phys. 2021, 21, 4381–4401. [Google Scholar] [CrossRef]
- Murata, K.; Zhang, D.Z. Concentration of bacterial aerosols in response to synoptic weather and land-sea breeze at a seaside site downwind of the Asian continent. J. Geophys. Res.-Atmos. 2016, 121, 11636–11647. [Google Scholar] [CrossRef]
- Tellier, R.; Li, Y.G.; Cowling, B.J.; Tang, J.W. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. Dis. 2019, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Chio, C.P.; Jou, L.J.; Liao, C.M. Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection. Indoor Air 2009, 19, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Kermack, W.O.; McKendrick, A.G. Contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character 1927, 115, 700–721. [Google Scholar] [CrossRef]
- Liu, W.; You, X.Y. Simulation of Pathogen Transport around Buildings Based on Three-Dimensional Model. In Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–16 June 2009; IEEE: New York, NY, USA, 2009; pp. 2753–2756. [Google Scholar]
- Gloster, J.; Jones, A.; Redington, A.; Burgin, L.; Sorensen, J.H.; Turner, R.; Dillon, M.; Hullinger, P.; Simpson, M.; Astrup, P.; et al. Airborne spread of foot-and-mouth disease—Model intercomparison. Vet. J. 2010, 183, 278–286. [Google Scholar] [CrossRef]
- Seo, J.H.; Jeon, H.W.; Choi, J.S.; Sohn, J.R. Prediction Model for Airborne Microorganisms Using Particle Number Concentration as Surrogate Markers in Hospital Environment. Int. J. Environ. Res. Public Health 2020, 17, 7237. [Google Scholar] [CrossRef]
- Kulkarni, S.; Sobhani, N.; Miller-Schulze, J.P.; Shafer, M.M.; Schauer, J.J.; Solomon, P.A.; Saide, P.E.; Spak, S.N.; Cheng, Y.F.; van der Gon, H.; et al. Source sector and region contributions to BC and PM 2.5 in Central Asia. Atmos. Chem. Phys. 2015, 15, 1683–1705. [Google Scholar] [CrossRef]
- Ho, C.K. Modeling airborne pathogen transport and transmission risks of SARS-CoV-2. Appl. Math. Model. 2021, 95, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Schurwanz, M.; Hoeher, P.A.; Bhattacharjee, S.; Damrath, M.; Stratmann, L.; Dressler, F. Infectious Disease Transmission via Aerosol Propagation from a Molecular Communication Perspective: Shannon Meets Coronavirus. IEEE Commun. Mag. 2021, 59, 40–46. [Google Scholar] [CrossRef]
- Nordsiek, F.; Bodenschatz, E.; Bagheri, G. Risk assessment for airborne disease transmission by poly-pathogen aerosols. PLoS ONE 2021, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Lau, Z.; Griffiths, I.M.; English, A.; Kaouri, K. Predicting the spatio-temporal infection risk in indoor spaces using an efficient airborne transmission model. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2022, 478, 28. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Qian, H.; Sun, Z.W.; Cao, J.P.; Liu, F.; Luo, X.B.; Ling, R.J.; Weschler, L.B.; Mo, J.H.; Zhang, Y.P. Assessing and controlling infection risk with Wells-Riley model and spatial flow impact factor (SFIF). Sust. Cities Soc. 2021, 67, 10. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Helleis, F.; Borrmann, S.; Cheng, Y.F.; Drewnick, F.; Haug, G.; Klimach, T.; Sciare, J.; Su, H.; Pöschl, U. Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments. Int. J. Environ. Res. Public Health 2020, 17, 18. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Takahara, T.; Iwai, N.; Yasumiba, K.; Igawa, T. Comparison of the detection of 3 endangered frog species by eDNA and acoustic surveys across 3 seasons. Freshw. Sci. 2020, 39, 18–27. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Kume, G.; Gotou, M.; Kono, T.; Fujii, T.; Inui, R.; Kurita, Y. Using environmental DNA analyses to assess the occurrence and abundance of the endangered amphidromous fish Plecoglossus altivelis ryukyuensis. Biodiver. Data J. 2020, 8, 11. [Google Scholar] [CrossRef]
- Cowart, D.A.; Matabos, M.; Brandt, M.I.; Marticorena, J.; Sarrazin, J. Exploring Environmental DNA (eDNA) to Assess Biodiversity of Hard Substratum Faunal Communities on the Lucky Strike Vent Field (Mid-Atlantic Ridge) and Investigate Recolonization Dynamics After an Induced Disturbance. Front. Mar. Sci. 2020, 6, 21. [Google Scholar] [CrossRef]
- DiBattista, J.D.; Liu, S.Y.V.; De Brauwer, M.; Wilkinson, S.P.; West, K.; Koziol, A.; Bunce, M. Gut content metabarcoding of specialized feeders is not a replacement for environmental DNA assays of seawater in reef environments. PeerJ 2023, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Lu, Y.T.; Song, Y.Z.; Zhang, R.F.; ShangGuan, X.Y.; Xu, H.Z.; Liu, C.R.; Liu, H.X. Analysis of Antibiotic Resistance Genes, Environmental Factors, and Microbial Community From Aquaculture Farms in Five Provinces, China. Front. Microbiol. 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Vasar, M.; Davison, J.; Moora, M.; Sepp, S.K.; Anslan, S.; Al-Quraishy, S.; Bahram, M.; Bueno, C.G.; Cantero, J.J.; Fabiano, E.C.; et al. Metabarcoding of soil environmental DNA to estimate plant diversity globally. Front. Plant Sci. 2023, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Leontidou, K.; Vokou, D.; Sandionigi, A.; Bruno, A.; Lazarina, M.; De Groeve, J.; Li, M.G.; Varotto, C.; Girardi, M.; Casiraghi, M.; et al. Plant biodiversity assessment through pollen DNA metabarcoding in Natura 2000 habitats (Italian Alps). Sci. Rep. 2021, 11, 12. [Google Scholar] [CrossRef]
- Radosevich, J.L.; Wilson, W.J.; Shinn, J.H.; DeSantis, T.Z.; Andersen, G.L. Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Lett. Appl. Microbiol. 2002, 34, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Dommergue, A.; Amato, P.; Tignat-Perrier, R.; Magand, O.; Thollot, A.; Joly, M.; Bouvier, L.; Sellegri, K.; Vogel, T.; Sonke, J.E.; et al. Methods to Investigate the Global Atmospheric Microbiome. Front. Microbiol. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Zulkefli, N.S.; Kim, K.H.; Hwang, S.J. Effects of Microbial Activity and Environmental Parameters on the Degradation of Extracellular Environmental DNA from a Eutrophic Lake. Int. J. Environ. Res. Public Health 2019, 16, 15. [Google Scholar] [CrossRef]
- Wong, M.K.S.; Nakao, M.; Hyodo, S. Field application of an improved protocol for environmental DNA extraction, purification, and measurement using Sterivex filter. Sci. Rep. 2020, 10, 13. [Google Scholar] [CrossRef]
- Balasingham, K.D.; Walter, R.P.; Heath, D.D. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem. Mol. Ecol. Resour. 2017, 17, 523–532. [Google Scholar] [CrossRef]
- Harnpicharnchai, P.; Pumkaeo, P.; Siriarchawatana, P.; Likhitrattanapisal, S.; Mayteeworakoon, S.; Ingsrisawang, L.; Boonsin, W.; Eurwilaichitr, L.; Ingsriswang, S. AirDNA sampler: An efficient and simple device enabling high-yield, high-quality airborne environment DNA for metagenomic applications. PLoS ONE 2023, 18, 19. [Google Scholar] [CrossRef]
- Banchi, E.; Ametrano, C.G.; Stankovic, D.; Verardo, P.; Moretti, O.; Gabrielli, F.; Lazzarin, S.; Borney, M.F.; Tassan, F.; Tretiach, M.; et al. DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS ONE 2018, 13, 20. [Google Scholar] [CrossRef]
- Banchi, E.; Ametrano, C.G.; Tordoni, E.; Stankovi, D.; Ongaro, S.; Tretiach, M.; Pallavicini, A.; Muggia, L.; Verardo, P.; Tassan, F.; et al. Environmental DNA assessment of airborne plant and fungal seasonal diversity. Sci. Total Environ. 2020, 738, 14. [Google Scholar] [CrossRef]
Location | Bioaerosol Types | Range of Bioaerosol Concentrations (CFU/m3) | Average Concentration (CFU/m3) | References |
---|---|---|---|---|
a. Indoor | ||||
India—school | Fungi | 656~1799 | Cafeteria 1799 Classroom 1388 Restroom 992 Environmental Lab 801 Seminar Hall 728 Library 656 | [36] |
Bacteria | 924~2750 | Cafeteria 2750 Restroom 2647 Environmental Lab 1998 Classroom 1709 Seminar Hall 1695 Library 924 | ||
Turkey | Fungi | <LOD~1969 | Dormitory 341 Dwelling 168 Cafeteria 160 Office 113 Classroom 110 Laboratory 99 Sport salon59 Restaurant 44 Kindergarten 35 Primary school 35 Library 18 | [37] |
China—Wastewater treatment plant | Bacteria | / | Sludge thickening house 2390 Fine screen 2279 | [38] |
Fungi | / | Sludge thickening house 8775 Fine screen 5603 | ||
b. Outdoor | ||||
China—Qingdao | Bacteria | / | Terrestrial Bacteria 33~664 Marine Bacteria 63~815 | [39] |
Fungi | / | Terrestrial Fungi 2777 Marine Fungi 66~1128 | ||
China—Xi’an | Bacteria | / | Winter roof 581 Autumn roof 523.5 | [40] |
Fungi | / | Winter roof 1234.4 Autumn roof 1318.9 | ||
Colombia—beach | Bacteria | 108~184 | / | [41] |
Fungi | 132~220 | / | ||
Poland—Gliwice | Bacteria | / | Winter 57 Spring 305 | [42] |
Sampling Methods | Advantages | Disadvantages | Frequency * | References | |
---|---|---|---|---|---|
2000–2019 | 2020–2023 | ||||
a. Passive sampling | |||||
Agar settling plate | Low cost. Simple to operate. Rapid culturable bioanalytical methods. | Limited sampling time. Only the culturable bioaerosol fraction was measured. Bias for collecting bioaerosol particles with larger particle sizes. | 0.031 | 0.04 | [70,71,72,73] |
Electrostatic precipitator | Sampled bioaerosols can be measured using a large number of analytical methods. | High initial and operational costs. Lower efficiency for very fine particles. Decreased performance with high-resistance dust. | 0.009 | 0.005 | [74,75,76,77,78] |
Vacuum, surface swabs, or wipes | Low cost. Fast sampling. | Age of collected dust samples is not available. Collection efficiency may vary depending on the surface material and the wiping/scrubbing pressure applied during collection. | 0.018 | 0.04 | [79] |
b. Active sampling | |||||
Impingement | Widely used technology. Large amounts of data available. Highly efficient. Use of liquid media overcomes overloading and enumeration problems. | Drying of the liquid medium due to evaporation. Sampling is required for further quantification. Samples may be contaminated after sampling. | 0.03 | 0.015 | [80,81,82] |
Impaction | Simple to operate. Low cost. Direct collection of microorganisms. Ideal as a particle size classifier. | Culturable microorganisms only. Possibility of overloading microorganisms in the plate. Strongly affected by wind speed and direction. Drying of the ager surface decreases efficiency. | 0.086 | 0.11 | [83,84] |
Filtration | Wide range of applications. Simple to operate. Low cost. Size-dependent biological particle collection. Suitable for a variety of enumeration and identification techniques. | Requires sampling for further quantification. Potential for microbial overload at highly contaminated sites. Risk of microbial desiccation due to continuous airflow. Risk of low microbial viability. | 0.101 | 0.13 | [85,86,87] |
Cyclone | Reduced rebound and loss of bioparticles. Better recycling and collection. Easy sterilization process. | Drying of liquid media due to evaporation. | 0.012 | 0.015 | [88,89] |
Detection Technologies | Advantages | Disadvantages | Frequency * | References | |
---|---|---|---|---|---|
2000–2019 | 2020–2023 | ||||
a. Offline detection technologies | |||||
Conventional colony counting and culturing methods | Low cost. Easy to operate. Can be used in dilution methods and selective media for specific microorganisms. | Time-consuming. Contamination problems may be encountered. Microbial overload may affect results. | 0.113 | 0.09 | [98,99,100,101] |
Classical Microscopy | Easy to operate. Microbial morphology can be observed. | Professional skills are required. The information available is limited. | 0.042 | 0.01 | [102,103] |
Polymerase chain reaction (PCR) | High sensitivity. | Requires specific primers. High sample purity requirements. | 0.055 | 0.125 | [104,105] |
b. Online detection methods | |||||
Mass Spectrometry | Rapid identification. Provides molecular fingerprint. | High equipment costs. High operator skill requirements. | 0.055 | 0.025 | [106,107] |
Raman spectroscopy | Eliminates the need for complex sample handling. Provides chemical structure information. | Takes longer to obtain data. | 0.004 | 0.01 | [108,109,110] |
Flow cytometry | High throughput. Enables rapid analysis of cell size and complexity. | Higher requirements for sample handling. | 0.009 | 0.01 | [111,112] |
Biosensor | Higher sensitivity and specificity. Highly customizable. | Requires specific biometric elements. May be environmentally sensitive. | 0.004 | 0.015 | [113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Dai, X.; Gebrezgiabhier, T.; Wang, Y.; Yang, M.; Wang, L.; Wang, W.; Man, Z.; Meng, Y.; Tong, L.; et al. Navigating the Aerosolized Frontier: A Comprehensive Review of Bioaerosol Research Post-COVID-19. Atmosphere 2024, 15, 404. https://doi.org/10.3390/atmos15040404
Zhang C, Dai X, Gebrezgiabhier T, Wang Y, Yang M, Wang L, Wang W, Man Z, Meng Y, Tong L, et al. Navigating the Aerosolized Frontier: A Comprehensive Review of Bioaerosol Research Post-COVID-19. Atmosphere. 2024; 15(4):404. https://doi.org/10.3390/atmos15040404
Chicago/Turabian StyleZhang, Chengchen, Xiaorong Dai, Tedros Gebrezgiabhier, Yuan Wang, Mengrong Yang, Leiping Wang, Wei Wang, Zun Man, Yang Meng, Lei Tong, and et al. 2024. "Navigating the Aerosolized Frontier: A Comprehensive Review of Bioaerosol Research Post-COVID-19" Atmosphere 15, no. 4: 404. https://doi.org/10.3390/atmos15040404
APA StyleZhang, C., Dai, X., Gebrezgiabhier, T., Wang, Y., Yang, M., Wang, L., Wang, W., Man, Z., Meng, Y., Tong, L., He, M., Zhou, B., Zheng, J., & Xiao, H. (2024). Navigating the Aerosolized Frontier: A Comprehensive Review of Bioaerosol Research Post-COVID-19. Atmosphere, 15(4), 404. https://doi.org/10.3390/atmos15040404