Influence of Transboundary Pollution on the Variability of Surface Ozone Concentrations in the Desert Southwest of the U.S.: Case Study for Arizona
Abstract
:1. Introduction
2. Methods
2.1. Site Descriptions
2.2. Surface O3 Measurements
2.3. Additional Data
2.4. Air Mass Trajectory Analysis
2.5. Concentration-Weighted Trajectory (CWT) Analysis
3. Results and Discussions
3.1. Seasonal Profiles
3.1.1. Meteorological Parameters
3.1.2. Back Trajectories
3.1.3. Surface O3 Concentrations
3.2. Trajectory Patterns: CWT Profiles
3.2.1. December–February (Winter)
3.2.2. March–May (Spring)
3.2.3. June (Dry Summer)
3.2.4. July–August (Monsoon Summer)
3.2.5. September–November (Fall)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. Int. 2018, 25, 8074–8088. [Google Scholar] [CrossRef]
- Smith, K.R.; Jerrett, M.; Anderson, H.R.; Burnett, R.T.; Stone, V.; Derwent, R.; Atkinson, R.W.; Cohen, A.; Shonkoff, S.B.; Krewski, D.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Health implications of short-lived greenhouse pollutants. Lancet 2009, 374, 2091–2103. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Lemonnier, P.; Wedow, J.M. The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biol. 2020, 22 (Suppl. 1), 5–11. [Google Scholar] [CrossRef]
- Agathokleous, E.; Feng, Z.; Oksanen, E.; Sicard, P.; Wang, Q.; Saitanis, C.J.; Araminiene, V.; Blande, J.D.; Hayes, F.; Calatayud, V.; et al. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Sci. Adv. 2020, 6, eabc1176. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Sadiq, M.; Pang, J.Y.S.; Yung, D.H.Y.; Feng, Z. Impacts of Surface Ozone Pollution on Global Crop Yields: Comparing Different Ozone Exposure Metrics and Incorporating Co-effects of CO2. Front. Sustain. Food Syst. 2021, 5, 534616. [Google Scholar] [CrossRef]
- Emberson, L.D.; Pleijel, H.; Ainsworth, E.A.; van den Berg, M.; Ren, W.; Osborne, S.; Mills, G.; Pandey, D.; Dentener, F.; Büker, P.; et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 2018, 100, 19–34. [Google Scholar] [CrossRef]
- Grulke, N.E.; Heath, R.L. Ozone effects on plants in natural ecosystems. Plant Biol. 2020, 22 (Suppl. 1), 12–37. [Google Scholar] [CrossRef] [PubMed]
- Tager, I.B.; Balmes, J.; Lurmann, F.; Ngo, L.; Alcorn, S.; Kunzli, N. Chronic exposure to ambient ozone and lung function in young adults. Epidemiology 2005, 16, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Jorres, R.A.; Holz, O.; Zachgo, W.; Timm, P.; Koschyk, S.; Muller, B.; Grimminger, F.; Seeger, W.; Kelly, F.J.; Dunster, C.; et al. The effect of repeated ozone exposures on inflammatory markers in bronchoalveolar lavage fluid and mucosal biopsies. Am. J. Respir. Crit. Care Med. 2000, 161, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Kinney, P.L.; Nilsen, D.M.; Lippmann, M.; Brescia, M.; Gordon, T.; McGovern, T.; El-Fawal, H.; Devlin, R.B.; Rom, W.N. Biomarkers of lung inflammation in recreational joggers exposed to ozone. Am. J. Respir. Crit. Care Med. 1996, 154, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Juráň, S.; Grace, J.; Urban, O. Temporal Changes in Ozone Concentrations and Their Impact on Vegetation. Atmosphere 2021, 12, 82. [Google Scholar] [CrossRef]
- Chameides, W.L.; Fehsenfeld, F.; Rodgers, M.O.; Cardelino, C.; Martinez, J.; Parrish, D.; Lonneman, W.; Lawson, D.R.; Rasmussen, R.A.; Zimmerman, P.; et al. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. 1992, 97, 6037–6055. [Google Scholar] [CrossRef]
- Pusede, S.E.; Steiner, A.L.; Cohen, R.C. Temperature and recent trends in the chemistry of continental surface ozone. Chem. Rev. 2015, 115, 3898–3918. [Google Scholar] [CrossRef] [PubMed]
- Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Tao, M.; Fiore, A.M.; Jin, X.; Schiferl, L.D.; Commane, R.; Judd, L.M.; Janz, S.; Sullivan, J.T.; Miller, P.J.; Karambelas, A.; et al. Investigating Changes in Ozone Formation Chemistry during Summertime Pollution Events over the Northeastern United States. Environ. Sci. Technol. 2022, 56, 15312–15327. [Google Scholar] [CrossRef]
- Koplitz, S.; Simon, H.; Henderson, B.; Liljegren, J.; Tonnesen, G.; Whitehill, A.; Wells, B. Changes in Ozone Chemical Sensitivity in the United States from 2007 to 2016. ACS Environ. Au 2022, 2, 206–222. [Google Scholar] [CrossRef]
- Wang, K.; Xie, F.; Sulaymon, I.D.; Gong, K.; Li, N.; Li, J.; Hu, J. Understanding the nocturnal ozone increase in Nanjing, China: Insights from observations and numerical simulations. Sci. Total Environ. 2023, 859, 160211. [Google Scholar] [CrossRef]
- Kanchana, A.L.; Sagar, V.K.; Pathakoti, M.; Mahalakshmi, D.V.; Mallikarjun, K.; Gharai, B. Ozone variability: Influence by its precursors and meteorological parameters—An investigation. J. Atmos. Sol. Terr. Phys. 2020, 211, 105468. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, S.; Zhao, W.; Wang, Y.; Zhang, Q.; Qu, C.; Liu, X.; Wen, X. Impacts of Meteorological Factors, VOCs Emissions and Inter-Regional Transport on Summer Ozone Pollution in Yuncheng. Atmosphere 2021, 12, 1661. [Google Scholar] [CrossRef]
- Shu, L.; Wang, T.; Han, H.; Xie, M.; Chen, P.; Li, M.; Wu, H. Summertime ozone pollution in the Yangtze River Delta of eastern China during 2013–2017: Synoptic impacts and source apportionment. Environ. Pollut. 2020, 257, 113631. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.M.; Oltmans, S.J. Variations in tropospheric ozone related to transport at American Samoa. J. Geophys. Res. Atmos. 1997, 102, 8781–8791. [Google Scholar] [CrossRef]
- Yadav, R.; Sahu, L.K.; Beig, G.; Jaaffrey, S.N.A. Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India. Atmos. Res. 2016, 176–177, 96–107. [Google Scholar] [CrossRef]
- Hov, O.; Hesstvedt, E.; Isaksen, I.S.A. Long-range transport of tropospheric ozone. Nature 1978, 273, 341–344. [Google Scholar] [CrossRef]
- Li, Q. Transatlantic transport of pollution and its effects on surface ozone in Europe and North America. J. Geophys. Res. 2002, 107, ACH 4-1–ACH 4-21. [Google Scholar] [CrossRef]
- Wang, H.; Lu, X.; Jacob, D.J.; Cooper, O.R.; Chang, K.-L.; Li, K.; Gao, M.; Liu, Y.; Sheng, B.; Wu, K.; et al. Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: An integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. Atmos. Chem. Phys. 2022, 22, 13753–13782. [Google Scholar] [CrossRef]
- Young, P.J.; Archibald, A.T.; Bowman, K.W.; Lamarque, J.F.; Naik, V.; Stevenson, D.S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 2063–2090. [Google Scholar] [CrossRef]
- Stevenson, D.S.; Dentener, F.J.; Schultz, M.G.; Ellingsen, K.; van Noije, T.P.C.; Wild, O.; Zeng, G.; Amann, M.; Atherton, C.S.; Bell, N.; et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. 2006, 111, D08301. [Google Scholar] [CrossRef]
- Jacob, D.J.; Logan, J.A.; Murti, P.P. Effect of rising Asian emissions on surface ozone in the United States. Geophys. Res. Lett. 1999, 26, 2175–2178. [Google Scholar] [CrossRef]
- Lin, M.; Fiore, A.M.; Horowitz, L.W.; Cooper, O.R.; Naik, V.; Holloway, J.; Johnson, B.J.; Middlebrook, A.M.; Oltmans, S.J.; Pollack, I.B.; et al. Transport of Asian ozone pollution into surface air over the western United States in spring. J. Geophys. Res. Atmos. 2012, 117, D00V07. [Google Scholar] [CrossRef]
- Fiore, A.M.; Jacob, D.J.; Bey, I.; Yantosca, R.M.; Field, B.D.; Fusco, A.C. Background ozone over the United States in summer: Origin, trend, and contribution to pollution episodes. J. Geophys. Res. 2002, 107, ACH 11-1–ACH 11-25. [Google Scholar] [CrossRef]
- McDonald-Buller, E.C.; Allen, D.T.; Brown, N.; Jacob, D.J.; Jaffe, D.; Kolb, C.E.; Lefohn, A.S.; Oltmans, S.; Parrish, D.D.; Yarwood, G.; et al. Establishing policy relevant background (PRB) ozone concentrations in the United States. Environ. Sci. Technol. 2011, 45, 9484–9497. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Cooper, O.R.; Fiore, A.M.; Henderson, B.H.; Tonnesen, G.S.; Russell, A.G.; Henze, D.K.; Langford, A.O.; Lin, M.; Moore, T. Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa 2018, 6, 56. [Google Scholar] [CrossRef]
- Census, U.S. 2020 Population Estimates. Available online: https://www.census.gov/programs-surveys/popest/technical-documentation/research/evaluation-estimates/2020-evaluation-estimates.html (accessed on 1 December 2022).
- Ellis, A.W.; Hildebrandt, M.L.; S. Fernando, H.J. Evidence of Lower-Atmospheric Ozone “Sloshing” in an Urbanized Valley. Phys. Geogr. 1999, 20, 520–536. [Google Scholar] [CrossRef]
- Malloy, J.W. Atmospheric patterns in relationship with observed ozone concentrations in the Phoenix, Arizona, metropolitan area during the North American Monsoon. Atmos. Environ. 2018, 191, 64–69. [Google Scholar] [CrossRef]
- Chalbot, M.-C.; Kavouras, I.G.; Dubois, D.W. Assessment of the Contribution of Wildfires to Ozone Concentrations in the Central US-Mexico Border Region. Aerosol Air Qual. Res. 2013, 13, 838–848. [Google Scholar] [CrossRef]
- Huang, M.; Bowman, K.W.; Carmichael, G.R.; Bradley Pierce, R.; Worden, H.M.; Luo, M.; Cooper, O.R.; Pollack, I.B.; Ryerson, T.B.; Brown, S.S. Impact of Southern California anthropogenic emissions on ozone pollution in the mountain states: Model analysis and observational evidence from space. J. Geophys. Res. Atmos. 2013, 118, 12,784–712,803. [Google Scholar] [CrossRef]
- Sorooshian, A.; Arellano, A.F.; Fraser, M.P.; Herckes, P.; Betito, G.; Betterton, E.A.; Braun, R.A.; Guo, Y.; Mirrezaei, M.A.; Roychoudhury, C. Ozone in the Desert Southwest of the United States: A Synthesis of Past Work and Steps Ahead. ACS ES&T Air 2024, 1, 62–79. [Google Scholar] [CrossRef]
- Hu, Y.; Odman, M.T.; Russell, A.G.; Kumar, N.; Knipping, E. Source apportionment of ozone and fine particulate matter in the United States for 2016 and 2028. Atmos. Environ. 2022, 285, 119226. [Google Scholar] [CrossRef]
- Huang, M.; Carmichael, G.R.; Chai, T.; Pierce, R.B.; Oltmans, S.J.; Jaffe, D.A.; Bowman, K.W.; Kaduwela, A.; Cai, C.; Spak, S.N.; et al. Impacts of transported background pollutants on summertime western US air quality: Model evaluation, sensitivity analysis and data assimilation. Atmos. Chem. Phys. 2013, 13, 359–391. [Google Scholar] [CrossRef]
- Diem, J. Explanations for the Spring Peak in Ground-Level Ozone in the Southwestern United States. Phys. Geogr. 2004, 25, 105–129. [Google Scholar] [CrossRef]
- Gaffney, J.S.; Marley, N.A.; Drayton, P.J.; Doskey, P.V.; Rao Kotamarthi, V.; Cunningham, M.M.; Christopher Baird, J.; Dintaman, J.; Hart, H.L. Field observations of regional and urban impacts on NO2, ozone, UVB, and nitrate radical production rates in the Phoenix air basin. Atmos. Environ. 2002, 36, 825–833. [Google Scholar] [CrossRef]
- Qu, Z.; Wu, D.; Henze, D.K.; Li, Y.; Sonenberg, M.; Mao, F. Transboundary transport of ozone pollution to a US border region: A case study of Yuma. Environ. Pollut. 2021, 273, 116421. [Google Scholar] [CrossRef]
- Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M. Regional-scale transport of air pollutants: Impacts of Southern California emissions on Phoenix ground-level ozone concentrations. Atmos. Chem. Phys. 2015, 15, 9345–9360. [Google Scholar] [CrossRef]
- Dimitriou, K.; Remoundaki, E.; Mantas, E.; Kassomenos, P. Spatial distribution of source areas of PM2.5 by Concentration Weighted Trajectory (CWT) model applied in PM2.5 concentration and composition data. Atmos. Environ. 2015, 116, 138–145. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Benedict, K.B.; Prenni, A.J.; El-Sayed, M.M.H.; Hecobian, A.; Zhou, Y.; Gebhart, K.A.; Sive, B.C.; Schichtel, B.A.; Collett, J.L. Volatile organic compounds and ozone at four national parks in the southwestern United States. Atmos. Environ. 2020, 239, 117783. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Wernli, H.; Shadwick, D.; Oltmans, S.J.; Shapiro, M. Quantifying the importance of stratospheric-tropospheric transport on surface ozone concentrations at high- and low-elevation monitoring sites in the United States. Atmos. Environ. 2012, 62, 646–656. [Google Scholar] [CrossRef]
- Atkinson-Palombo, C.; Miller, J.; Ballingjr, R. Quantifying the ozone “weekend effect” at various locations in Phoenix, Arizona. Atmos. Environ. 2006, 40, 7644–7658. [Google Scholar] [CrossRef]
- Ellis, A.W.; Hildebrandt, M.L.; Thomas, W.M.; H.J.S., F. Analysis of the climatic mechanisms contributing to the summertime transport of lower atmospheric ozone across metropolitan Phoenix, Arizona, USA. Clim. Res. 2000, 15, 13–31. [Google Scholar] [CrossRef]
- Diem, J.E.; Comrie, A.C. Air Quality, Climate, and Policy: A Case Study of Ozone Pollution in Tucson, Arizona. Prof. Geogr. 2001, 53, 469–491. [Google Scholar] [CrossRef]
- Rohde, R.A.; Muller, R.A. Air Pollution in China: Mapping of Concentrations and Sources. PLoS ONE 2015, 10, e0135749. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant concurrent decrease in PM(2.5) and NO(2) concentrations in China during COVID-19 epidemic. J. Environ. Sci. 2021, 99, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Blake, D.R.; Li, L.; Zhang, Z.; Wang, S.; Guo, H.; Lee, F.S.C.; Gao, B.; Chan, L.; et al. Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China. J. Geophys. Res. Atmos. 2012, 117, D15306. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Schroeder, W.; Hall, J.V.; Justice, C.O. Modis Collection 6 Active Fire Product User’s Guide Revision A; Department of Geographical Sciences, University of Maryland: College Park, MD, USA, 2015; Volume 9. [Google Scholar]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Gonzalez, M.E.; Garfield, J.G.; Corral, A.F.; Edwards, E.-L.; Zeider, K.; Sorooshian, A. Extreme Aerosol Events at Mesa Verde, Colorado: Implications for Air Quality Management. Atmosphere 2021, 12, 1140. [Google Scholar] [CrossRef]
- Hilario, M.R.A.; Cruz, M.T.; Bañaga, P.A.; Betito, G.; Braun, R.A.; Stahl, C.; Cambaliza, M.O.; Lorenzo, G.R.; MacDonald, A.B.; AzadiAghdam, M.; et al. Characterizing Weekly Cycles of Particulate Matter in a Coastal Megacity: The Importance of a Seasonal, Size-Resolved, and Chemically Speciated Analysis. J. Geophys. Res. Atmos. 2020, 125, e2020JD032614. [Google Scholar] [CrossRef]
- Crosbie, E.; Sorooshian, A.; Monfared, N.A.; Shingler, T.; Esmaili, O. A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data. Atmosphere 2014, 5, 178–197. [Google Scholar] [CrossRef]
- Stunder, B.J.B. An Assessment of the Quality of Forecast Trajectories. J. Appl. Meteorol. 1996, 35, 1319–1331. [Google Scholar] [CrossRef]
- Fang, C.; Wang, L.; Li, Z.; Wang, J. Spatial Characteristics and Regional Transmission Analysis of PM(2.5) Pollution in Northeast China, 2016–2020. Int. J. Environ. Res. Public Health 2021, 18, 12483. [Google Scholar] [CrossRef]
- Zhao, Q.; He, Q.; Jin, L.; Wang, J.; Donateo, A. Potential Source Regions and Transportation Pathways of Reactive Gases at a Regional Background Site in Northwestern China. Adv. Meteorol. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Zhu, C.; He, Q.; Zhao, Z.; Liu, X.; Pu, Z. Comparative Analysis of Ozone Pollution Characteristics between Urban Area and Southern Mountainous Area of Urumqi, China. Atmosphere 2023, 14, 1387. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, J.; Han, L.; Tian, W.; Wang, C.; Li, Y.; Chen, J. Source apportionment of VOCs and ozone formation potential and transport in Chengdu, China. Atmos. Pollut. Res. 2023, 14, 101730. [Google Scholar] [CrossRef]
- Youn, J.S.; Wang, Z.; Wonaschutz, A.; Arellano, A.; Betterton, E.A.; Sorooshian, A. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert. Geophys. Res. Lett. 2013, 40, 3468–3472. [Google Scholar] [CrossRef]
- Crosbie, E.; Youn, J.S.; Balch, B.; Wonaschutz, A.; Shingler, T.; Wang, Z.; Conant, W.C.; Betterton, E.A.; Sorooshian, A. On the competition among aerosol number, size and composition in predicting CCN variability: A multi-annual field study in an urbanized desert. Atmos. Chem. Phys. 2015, 15, 6943–6958. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Ashbaugh, L.L.; Malm, W.C.; Sadeh, W.Z. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos. Environ. 1985, 19, 1263–1270. [Google Scholar] [CrossRef]
- Bian, Q.; Alharbi, B.; Shareef, M.M.; Husain, T.; Pasha, M.J.; Atwood, S.A.; Kreidenweis, S.M. Sources of PM2.5 carbonaceous aerosol in Riyadh, Saudi Arabia. Atmos. Chem. Phys. 2018, 18, 3969–3985. [Google Scholar] [CrossRef]
- Jhun, I.; Coull, B.A.; Zanobetti, A.; Koutrakis, P. The impact of nitrogen oxides concentration decreases on ozone trends in the USA. Air Qual. Atmos. Health 2015, 8, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Roychoudhury, C.; Mirrezaei, M.A.; Kumar, R.; Sorooshian, A.; Arellano, A.F. Investigating Ground-Level Ozone Pollution in Semi-Arid and Arid Regions of Arizona Using WRF-Chem v4.4 Modeling. Geosci. Model. Dev. 2024. in review. [Google Scholar] [CrossRef]
- Pancholi, P.; Kumar, A.; Bikundia, D.S.; Chourasiya, S. An observation of seasonal and diurnal behavior of O3–NOx relationships and local/regional oxidant (OX = O3 + NO2) levels at a semi-arid urban site of western India. Sustain. Environ. Res. 2018, 28, 79–89. [Google Scholar] [CrossRef]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Strode, S.A.; Rodriguez, J.M.; Logan, J.A.; Cooper, O.R.; Witte, J.C.; Lamsal, L.N.; Damon, M.; Van Aartsen, B.; Steenrod, S.D.; Strahan, S.E. Trends and variability in surface ozone over the United States. J. Geophys. Res. Atmos. 2015, 120, 9020–9042. [Google Scholar] [CrossRef]
- Li, M.; Yu, S.; Chen, X.; Li, Z.; Zhang, Y.; Wang, L.; Liu, W.; Li, P.; Lichtfouse, E.; Rosenfeld, D.; et al. Large scale control of surface ozone by relative humidity observed during warm seasons in China. Environ. Chem. Lett. 2021, 19, 3981–3989. [Google Scholar] [CrossRef]
- Wise; Comrie. Meteorologically adjusted urban air quality trends in the Southwestern United States. Atmos. Environ. 2005, 39, 2969–2980. [Google Scholar] [CrossRef]
- Wise; Comrie. Extending the Kolmogorov-Zurbenko filter: Application to ozone, particulate matter, and meteorological trends. J. Air Waste Manag. Assoc. 2005, 55, 1208–1216. [Google Scholar] [CrossRef]
- Haman, C.L.; Couzo, E.; Flynn, J.H.; Vizuete, W.; Heffron, B.; Lefer, B.L. Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas. J. Geophys. Res. Atmos. 2014, 119, 6230–6245. [Google Scholar] [CrossRef]
- Fu, Y.; Li, R.; Wang, X.; Bergeron, Y.; Valeria, O.; Chavardès, R.D.; Wang, Y.; Hu, J. Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products. Remote Sens. 2020, 12, 2870. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.P.; Freeborn, P.H.; Boschetti, L.; Justice, C.; Ichoku, C.; Schroeder, W.; Davies, D.; et al. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Kendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. Atmos. 1998, 103, 32215–32238. [Google Scholar] [CrossRef]
- Han, J.; Shin, B.; Lee, M.; Hwang, G.; Kim, J.; Shim, J.; Lee, G.; Shim, C. Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows. Atmos. Chem. Phys. 2015, 15, 12611–12621. [Google Scholar] [CrossRef]
- Gaffney, J.S.; Marley, N.A.; Cunningham, M.M.; Kotamarthi, V.R. Beryllium-7 measurements in the Houston and Phoenix urban areas: An estimation of upper atmospheric ozone contributions. J. Air Waste Manag. Assoc. 2005, 55, 1228–1235. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Zeng, H. Multi-objective optimal dispatch strategy for power systems with Spatio-temporal distribution of air pollutants. Sustain. Cities Soc. 2023, 98, 104801. [Google Scholar] [CrossRef]
Site Name | Latitude, Longitude | County | Elevation Above Sea Level (m) | Land Use Type | Location Setting |
---|---|---|---|---|---|
Grand Canyon | 36.058 N, 112.184 W | Coconino | 2070 | Desert | Rural |
Alamo Lake | 34.243 N, 113.559 W | La Paz | 376 | Desert | Rural |
JLG Supersite | 33.503 N, 112.096 W | Maricopa | 346 | Residential | Urban and center city |
Children’s Park | 32.295 N, 110.982 W | Pima | 703 | Residential | Urban and center city |
Yuma Supersite | 32.690 N, 114.614 W | Yuma | 51 | Commercial | Urban and center city |
Chiricahua | 32.009 N, 109.389 W | Cochise | 1569 | Desert | Rural |
Season | Grand Canyon | Alamo Lake | JLG Supersite | Yuma Supersite | Children’s Park | Chiricahua |
---|---|---|---|---|---|---|
Winter | 41 ± 5 (43 ± 4) | 31 ± 10 (40 ± 6) | 19 ± 16 (33 ± 9) | 27 ± 14 (38 ± 6) | 22 ± 15 (36 ± 7) | 38 ± 7 (42 ± 5) |
Spring | 49 ± 7 (52 ± 6) | 44 ± 12 (54 ± 7) | 37 ± 18 (53 ± 9) | 40 ± 15 (52 ± 8) | 38 ± 15 (52 ± 7) | 47 ± 9 (53 ± 6) |
Dry summer | 51 ± 6 (54 ± 5) | 46 ± 11 (55 ± 6) | 39 ± 19 (57 ± 11) | 40 ± 14 (52 ± 11) | 40 ± 15 (53 ± 7) | 46 ± 10 (54 ± 6) |
Monsoon summer | 49 ± 7 (52 ± 6) | 41 ± 11 (50 ± 7) | 39 ± 18 (56 ± 12) | 34 ± 13 (44 ± 10) | 39 ± 15 (52 ± 9) | 42 ± 12 (51 ± 8) |
Fall | 43 ± 6 (45 ± 6) | 36 ± 11 (46 ± 6) | 26 ± 20 (46 ± 11) | 30 ± 15 (44 ± 8) | 27 ± 15 (42 ± 8) | 38 ± 9 (43 ± 7) |
(a) DJF | (b) MAM | (c) J | ||||||||||||||||
Location | GC | AL | JS | YS | CP | CM | GC | AL | JS | YS | CP | CM | GC | AL | JS | YS | CP | CM |
Within Arizona | 17.3 | 0.18 | 21.8 | 14.5 | 2.6 | 1.3 | 1.0 | 22.5 | 23.8 | 12.6 | 8.7 | 0.95 | 12.1 | 20.0 | ||||
Outside Arizona | 35.1 | 6.0 | 40.2 | 36.1 | 2.6 | 20.4 | 5.7 | 31.0 | 32.8 | 28.2 | 5.2 | 16.4 | 7.9 | 27.6 | ||||
Ocean | 10.0 | 0.69 | 22.2 | 32.7 | 3.7 | 35.9 | 6.3 | 33.8 | 25.0 | 46.5 | 5.3 | 24.7 | 5.8 | 36.6 | ||||
(d) JA | (e) SON | |||||||||||||||||
Location | GC | AL | JS | YS | CP | CM | GC | AL | JS | YS | CP | CM | ||||||
Within Arizona | 38.0 | 16.4 | 16.2 | 0.27 | 14.8 | 25.8 | 15.7 | 4.5 | ||||||||||
Outside Arizona | 30.4 | 6.6 | 6.6 | 1.9 | 12.0 | 33.8 | 19.5 | 1.0 | 0.4 | 0.01 | 0.5 | 10.6 | ||||||
Ocean | 24.4 | 5.3 | 5.3 | 0.83 | 1.7 | 11.1 | 5.6 | 0.48 | 0.03 | 0.01 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betito, G.; Arellano, A.; Sorooshian, A. Influence of Transboundary Pollution on the Variability of Surface Ozone Concentrations in the Desert Southwest of the U.S.: Case Study for Arizona. Atmosphere 2024, 15, 401. https://doi.org/10.3390/atmos15040401
Betito G, Arellano A, Sorooshian A. Influence of Transboundary Pollution on the Variability of Surface Ozone Concentrations in the Desert Southwest of the U.S.: Case Study for Arizona. Atmosphere. 2024; 15(4):401. https://doi.org/10.3390/atmos15040401
Chicago/Turabian StyleBetito, Grace, Avelino Arellano, and Armin Sorooshian. 2024. "Influence of Transboundary Pollution on the Variability of Surface Ozone Concentrations in the Desert Southwest of the U.S.: Case Study for Arizona" Atmosphere 15, no. 4: 401. https://doi.org/10.3390/atmos15040401
APA StyleBetito, G., Arellano, A., & Sorooshian, A. (2024). Influence of Transboundary Pollution on the Variability of Surface Ozone Concentrations in the Desert Southwest of the U.S.: Case Study for Arizona. Atmosphere, 15(4), 401. https://doi.org/10.3390/atmos15040401