Investigating the Role of the Low-Level Jet in Two Winters Severe Dust Rising in Southwest Iran
Abstract
:1. Introduction
2. Data Description and Methodology
2.1. Study Area
2.2. Data
2.3. Method
3. Results and Discussion
3.1. Vibility Reduction and 10-m Wind Speed
3.2. HYSPLIT Model Simulations
3.3. Synoptic Investigation
3.4. LLJ and Its Relationship with 10-m Wind Speed
3.5. WRF-Chem Dust Surface Concentration
3.6. LLJ and Momentum in Dust Emission
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Middleton, N. Deserts: A Very Short Introduction; Oxford University Press: Oxford, UK, 2009; Volume 215. [Google Scholar]
- Al-Dousari, A. (Ed.) Atlas of Fallen Dust in Kuwait; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Knippertz, P.; Stuut, J.B.W. Mineral Dust—A Key Player in the Earth System; Springer: Berlin/Heidelberg, Germany, 2014; pp. 121–147. [Google Scholar]
- Khusfi, Z.E.; Khosroshahi, M.; Roustaei, F.; Mirakbari, M. Spatial and seasonal variations of sand-dust events and their relation to atmospheric conditions and vegetation cover in semi-arid regions of central Iran. Geoderma 2020, 365, 114225. [Google Scholar] [CrossRef]
- Broomandi, P.; Dabir, B.; Bonakdarpour, B.; Rashidi, Y. Identification of dust storm origin in South–West of Iran. J. Environ. Health Sci. Eng. 2017, 15, 16. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Mohammadpour, K. Long-term variability of dust events in southwestern Iran and its relationship with the drought. Atmosphere 2021, 12, 1350. [Google Scholar] [CrossRef]
- Karegar, E.; Hossein Hamzeh, N.; Bodagh Jamali, J.; Ranjbar Saadat Abadi, A.; Moeinaddini, M.; Goshtasb, H. Numerical simulation of extreme dust storms in east of Iran by the WRF-Chem model. Nat. Hazards 2019, 99, 769–796. [Google Scholar] [CrossRef]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. Numerical simulation of dust events in the Middle East. Aeolian Res. 2014, 13, 59–70. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Alam, K.; Noori, F.; Abadi, A.R.S. Spatio-temporal and synoptic changes in dust at the three islands in the Persian Gulf region. J. Atmos. Sol.-Terr. Phys. 2021, 214, 105539. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Alam, K.; Ranjbar, A. Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeolian Res. 2021, 50, 100679. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Rautenbach, C.d.; Eriksson, P.G.; Qiang, M.; Gupta, P. Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Res. 2012, 5, 51–62. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Francois, P.; Kosmopoulos, P.; Legrand, M. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Res. 2015, 16, 35–48. [Google Scholar] [CrossRef]
- MalAmiri, N.; Rashki, A.; Hosseinzadeh, S.R.; Kaskaoutis, D. Mineralogical, geochemical, and textural characteristics of soil and airborne samples during dust storms in Khuzestan, southwest Iran. Chemosphere 2022, 286, 131879. [Google Scholar] [CrossRef]
- Ghasem, A.; Shamsipour, A.; Miri, M.; Safarrad, T. Synoptic and remote sensing analysis of dust events in southwestern Iran. Nat. Hazards 2012, 64, 1625–1638. [Google Scholar] [CrossRef]
- Dargahian, F.; Lotfinasab Asl, S.; Khosroshahi, M.; Gohardoust, A. Determining the share of internal and external resources of dust in Khuzestan province. Iran Nat. 2017, 2, 36–41. [Google Scholar]
- Shahsavani, A.; Naddafi, K.; Haghighifard, N.J.; Mesdaghinia, A.; Yunesian, M.; Nabizadeh, R.; Arahami, M.; Sowlat, M.; Yarahmadi, M.; Saki, H. The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010. J. Arid Environ. 2012, 77, 72–83. [Google Scholar] [CrossRef]
- World Health Organization. Noncommunicable Diseases Country Profiles 2018. Available online: https://www.who.int/publications-detail-redirect/9789241514620 (accessed on 1 December 2023).
- Middleton, N. Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences 2019, 9, 261. [Google Scholar] [CrossRef]
- Rashki, A.; Middleton, N.J.; Goudie, A.S. Dust storms in Iran–Distribution, causes, frequencies and impacts. Aeolian Res. 2021, 48, 100655. [Google Scholar] [CrossRef]
- Hermida, L.; Merino, A.; Sánchez, J.; Fernández-González, S.; García-Ortega, E.; López, L. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula. Atmos. Res. 2018, 199, 29–39. [Google Scholar] [CrossRef]
- Namdari, S.; Karimi, N.; Sorooshian, A.; Mohammadi, G.; Sehatkashani, S. Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos. Environ. 2018, 173, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, K.; Sciortino, M.; Kaskaoutis, D.G. Classification of weather clusters over the Middle East associated with high atmospheric dust-AODs in West Iran. Atmos. Res. 2021, 259, 105682. [Google Scholar] [CrossRef]
- Zarasvandi, A.; Carranza, E.; Moore, F.; Rastmanesh, F. Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J. Geochem. Explor. 2011, 111, 138–151. [Google Scholar] [CrossRef]
- Barkan, J.; Alpert, P. Synoptic analysis of a rare event of Saharan dust reaching the Arctic region. Weather 2010, 65, 208–211. [Google Scholar] [CrossRef]
- Westphal, D.L.; Toon, O.B.; Carlson, T.N. A case study of mobilization and transport of Saharan dust. J. Atmos. Sci. 1988, 45, 2145–2175. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.C. Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: The role of the low level jet. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Knippertz, P. Dust emissions in the West African heat trough-the role of the diurnal cycle and of extratropical disturbances. Meteorol. Z. 2008, 17, 553. [Google Scholar] [CrossRef]
- Schepanski, K.; Tegen, I.; Todd, M.; Heinold, B.; Bönisch, G.; Laurent, B.; Macke, A. Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Alizadeh Choobari, O.; Zawar-Reza, P.; Sturman, A. Low level jet intensification by mineral dust aerosols. Proc. Ann. Geophys. 2013, 31, 625–632. [Google Scholar] [CrossRef]
- Fiedler, S.; Schepanski, K.; Heinold, B.; Knippertz, P.; Tegen, I. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos. 2013, 118, 6100–6121. [Google Scholar] [CrossRef] [PubMed]
- Heinold, B.; Knippertz, P.; Marsham, J.; Fiedler, S.; Dixon, N.; Schepanski, K.; Laurent, B.; Tegen, I. The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations. J. Geophys. Res. Atmos. 2013, 118, 4385–4400. [Google Scholar] [CrossRef]
- Salmabadi, H.; Khalidy, R.; Saeedi, M. Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005–2017. Atmos. Res. 2020, 241, 104947. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Wang, F.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Climatic controls on the interannual to decadal variability in Saudi Arabian dust activity: Toward the development of a seasonal dust prediction model. J. Geophys. Res. Atmos. 2015, 120, 1739–1758. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Sciortino, M.; Saligheh, M.; Raziei, T.; Boloorani, A.D. Spatiotemporal regionalization of atmospheric dust based on multivariate analysis of MACC model over Iran. Atmos. Res. 2021, 249, 105322. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Karami, S.; Kaskaoutis, D.G.; Tegen, I.; Moradi, M.; Opp, C. Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region. Atmosphere 2021, 12, 125. [Google Scholar] [CrossRef]
- Abadi, A.R.S.; Hamzeh, N.H.; Shukurov, K.; Opp, C.; Dumka, U.C. Long-term investigation of aerosols in the Urmia Lake region in the Middle East by ground-based and satellite data in 2000–2021. Remote Sens. 2022, 14, 3827. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Ranjbar Saadat Abadi, A.; Ooi, M.C.G.; Habibi, M.; Schöner, W. Analyses of a Lake Dust Source in the Middle East through Models Performance. Remote Sens. 2022, 14, 2145. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Alam, K.; Ranjbar, A. The study of a rare frontal dust storm with snow and rain fall: Model results and ground measurements. J. Atmos. Sol.-Terr. Phys. 2020, 197, 105149. [Google Scholar] [CrossRef]
- Abadi, A.R.S.; Hamzeh, N.H.; Chel Gee Ooi, M.; Kong, S.S.-K.; Opp, C. Investigation of Two Severe Shamal Dust Storms and the Highest Dust Frequencies in the South and Southwest of Iran. Atmosphere 2022, 13, 1990. [Google Scholar] [CrossRef]
- Gherboudj, I.; Beegum, S.N.; Ghedira, H. Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential. Earth-Sci. Rev. 2017, 165, 342–355. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East dust events. Aeolian Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Moridnejad, A.; Karimi, N.; Ariya, P.A. A new inventory for middle east dust source points. Environ. Monit. Assess. 2015, 187, 582. [Google Scholar] [CrossRef] [PubMed]
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. A review of drought in the Middle East and southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Al Ameri, I.D.; Briant, R.M.; Engels, S. Drought severity and increased dust storm frequency in the Middle East: A case study from the Tigris–Euphrates alluvial plain, central Iraq. Weather 2019, 74, 416–426. [Google Scholar] [CrossRef]
- Zoljoodi, M.; Didevarasl, A.; Saadatabadi, A.R. Dust events in the western parts of Iran and the relationship with drought expansion over the dust-source areas in Iraq and Syria. Atmos. Clim. Sci. 2013, 3, 321–336. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Kalashnikova, O.V.; Garay, M.J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 2016, 121, 289–305. [Google Scholar] [CrossRef]
- Karami, S.; Kaskaoutis, D.G.; Kashani, S.S.; Rahnama, M.; Rashki, A. Evaluation of nine operational models in forecasting different types of synoptic dust events in the Middle East. Geosciences 2021, 11, 458. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Abadi, A.R.S.; Madhavan, B.L. Investigation of a severe frontal dust storm over the Persian Gulf in February 2020 by CAMS model. Arab. J. Geosci. 2021, 14, 2041. [Google Scholar] [CrossRef]
- Miller, S.D.; Kuciauskas, A.P.; Liu, M.; Ji, Q.; Reid, J.S.; Breed, D.W.; Walker, A.L.; Mandoos, A.A. Haboob dust storms of the southern Arabian Peninsula. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Shahsavani, A.; Naddafi, K.; Jaafarzadeh Haghighifard, N.; Mesdaghinia, A.; Yunesian, M.; Nabizadeh, R.; Arhami, M.; Yarahmadi, M.; Sowlat, M.H.; Ghani, M. Characterization of ionic composition of TSP and PM 10 during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Environ. Monit. Assess. 2012, 184, 6683–6692. [Google Scholar] [CrossRef] [PubMed]
- Broomandi, P.; Dabir, B.; Bonakdarpour, B.; Rashidi, Y. Mineralogical and chemical characterization of suspended atmospheric particles in Ahvaz. Int. J. Environ. Res. 2017, 11, 55–62. [Google Scholar] [CrossRef]
- Hejazi, S.J. Transferring flood to the dust sources of the province of Khuzestan (Southwest Iran): A multipurpose approach to water resource management. Arab. J. Geosci. 2022, 15, 332. [Google Scholar] [CrossRef]
- O’Loingsigh, T.; McTainsh, G.; Tews, E.; Strong, C.; Leys, J.; Shinkfield, P.; Tapper, N. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records. Aeolian Res. 2014, 12, 29–40. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kållberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim archive Version 2.0, Shinfield Park. Reading 2011, 1, 23. [Google Scholar]
- Mobarak Hassan, E.; Alizadeh, O. Dust events in southwestern Iran: Estimation of PM10 concentration based on horizontal visibility during dust events. Int. J. Climatol. 2022, 42, 5159–5172. [Google Scholar] [CrossRef]
- Liu, H.; He, M.; Wang, B.; Zhang, Q. Advances in low-level jet research and future prospects. J. Meteorol. Res. 2014, 28, 57–75. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Bright, J.M.; Gueymard, C.A. Climate-specific and global validation of MODIS Aqua and Terra aerosol optical depth at 452 AERONET stations. Sol. Energy 2019, 183, 594–605. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. Atmos. 1995, 100, 16415–16430. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-31–38-34. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Chen, F.; Janjić, Z.; Mitchell, K. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteorol. 1997, 85, 391–421. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Chou, M.-D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. 1994. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=89b5ba55c9c4527da0ddaeacce2891605d02cd43 (accessed on 28 November 2023).
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- LeGrand, S.L.; Polashenski, C.; Letcher, T.W.; Creighton, G.A.; Peckham, S.E.; Cetola, J.D. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3. 8.1. Geosci. Model Dev. 2019, 12, 131–166. [Google Scholar] [CrossRef]
- Abbasi, H.R.; Opp, C.; Groll, M.; Gohardoust, A.; Rouhipour, H. Wind regime and aeolian sand transport in Khuzestan Sand Sea. Aeolian Res. 2021, 53, 100746. [Google Scholar] [CrossRef]
- Middleton, N. Dust storm hazards. E3S Web Conf. 2019, 99, 04001. [Google Scholar] [CrossRef]
- Neisi, A.; Goudarzi, G.; Akbar Babaei, A.; Vosoughi, M.; Hashemzadeh, H.; Naimabadi, A.; Mohammadi, M.J.; Hashemzadeh, B. Study of heavy metal levels in indoor dust and their health risk assessment in children of Ahvaz city, Iran. Toxin Rev. 2016, 35, 16–23. [Google Scholar] [CrossRef]
- Boloorani, A.D.; Shorabeh, S.N.; Samany, N.N.; Mousivand, A.; Kazemi, Y.; Jaafarzadeh, N.; Zahedi, A.; Rabiei, J. Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, IRAN. Environ. Pollut. 2021, 279, 116859. [Google Scholar] [CrossRef] [PubMed]
- Daniali, M.; Karimi, N. Spatiotemporal analysis of dust patterns over Mesopotamia and their impact on Khuzestan province, Iran. Nat. Hazards 2019, 97, 259–281. [Google Scholar] [CrossRef]
- Khalidy, R.; Salmabadi, H.; Saeedi, M. Numerical simulation of a severe dust storm over Ahvaz using the HYSPLIT model. Int. J. Environ. Res. 2019, 13, 161–174. [Google Scholar] [CrossRef]
Synoptic Station | Longitude | Latitude | Elevation (m) |
---|---|---|---|
Abadan | 48.21° E | 30.37° N | 6 |
Ahvaz | 48.60° E | 31.33° N | 22.5 |
Behbahan | 50.22° E | 30.60° N | 313 |
Bostan | 48.00° E | 31.71° N | 8.6 |
Dezful | 48.43° E | 32.25° N | 82 |
Hendijan | 49.70° E | 30.24° N | 3 |
Izeh | 49.51° E | 31.50° N | 827 |
Mahshahr | 49.15° E | 30.54° N | 6.2 |
Masjedsolyman | 49.94° E | 31.58° N | 320.5 |
Omidiyeh | 49.50° E | 30.83° N | 26 |
Ramhormoz | 49.59° E | 31.27° N | 150 |
Shushtar | 48.83° E | 32.05° N | 67 |
Model Properties | Scheme |
---|---|
Resolution | 27 km |
Vertical level | 32 level |
Physics | |
Cumulus | Grell 3D scheme [62] |
PBL | Yonsei university scheme (YSU) [63] |
Surface Layer | Monin-Obukhov (Janjic Eta) scheme [64] |
Microphysics | WRF Single-Moment 5-class scheme [60] |
Longwave Radiation | RRTM (rapid radiative transfer model) scheme [65] |
Shortwave Radiation | Goddard shortwave [66] |
Land surface process | Noah land surface model [67] |
Chemical | |
Chem_Opt = 401 | 4 bin Dust |
emissions scenario Dust Scheme | AFWA [61,68] |
Synoptic Station | Bostan | Abadan | Dezful | Masjedsolyman | Omidiyeh | Mahshahr | Ahvaz | Ramhormoz | Izeh | Behbahan | Shushtar | Hendijan |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean annual of dusty days | 88.4 | 82.7 | 74.8 | 66.6 | 62.9 | 64 | 52 | 50 | 49 | 44.6 | 43.8 |
29 January 2015 | 10 February 2015 | ||||
---|---|---|---|---|---|
Station | Time (UTC) | 10-m Wind Speed (m/s) | Visibility (m) | 10-m Wind Speed (m/s) | Visibility (m) |
Abadan | 00:00 | 3 | 7000 | 5 | 10,000 |
03:00 | 6 | 7000 | 4 | 8000 | |
06:00 | 5 | 6000 | 12 | 3000 | |
09:00 | 10 | 200 | 18 | 100 | |
12:00 | 13 | 300 | 19 | 800 | |
Ahvaz | 00:00 | 2 | 7000 | 1 | 5000 |
03:00 | 5 | 6000 | 2 | 6000 | |
06:00 | 5 | 8000 | 8 | 200 | |
09:00 | 8 | 200 | 6 | 100 | |
12:00 | 7 | 100 | 10 | 100 | |
Bostan | 00:00 | 5 | 10,000 | 5 | 10,000 |
03:00 | 5 | 10,000 | 5 | 8000 | |
06:00 | 5 | 7000 | 6 | 6000 | |
09:00 | 10 | 2000 | 11 | 3000 | |
12:00 | 9 | 2000 | 10 | 800 | |
Hendijan | 00:00 | 0 | 10,000 | 0 | 10,000 |
03:00 | 6 | 10,000 | 8 | 10,000 | |
06:00 | 5 | 10,000 | 11 | 300 | |
09:00 | 11 | 500 | 13 | 100 | |
12:00 | 10 | 300 | 12 | 4000 | |
Mahshahr | 00:00 | 8 | 10,000 | 2 | 10,000 |
03:00 | 7 | 10,000 | 5 | 10,000 | |
06:00 | 7 | 10,000 | 9 | 7000 | |
09:00 | 15 | 2500 | 17 | 1800 | |
12:00 | 11 | 4500 | 10 | 7000 |
29 January 2015 | 10 February 2015 | ||||||
---|---|---|---|---|---|---|---|
Station | Time (UTC) | Maximum Wind Speed Level | Wind Speed (m/s) | Wind Shear (-) (m/s) | Maximum Wind Speed Level (hPa) | Wind Speed (m/s) | Wind Shear (-) (m/s) |
Abadan | 00 | 950 | 17.4 | −8.6 | 950 | 17.5 | −6.2 |
03 | 950 | 16.5 | −11.4 | 950 | 16.8 | −8.7 | |
06 | 950 | 17.3 | −12.2 | 950 | 19.2 | −4.1 | |
09 | 950 | 15.6 | −7.6 | 950 | 14.8 | −2.1 | |
12 | 950 | 14 | −5.1 | 975 | 15.2 | −10.0 | |
Ahavaz | 00 | 950 | 17.2 | −6 | 925 | 18.9 | −4.8 |
03 | 950 | 17.9 | −11.3 | 925 | 22.9 | −11.1 | |
06 | 950 | 19.9 | −13.9 | 950 | 24.8 | −12.1 | |
09 | 900 | 16.8 | −8.0 | 900 | 21.6 | −4.3 | |
12 | 900 | 15.8 | −5.7 | 925 | 19.0 | −10.9 | |
Bostan | 00 | 975 | 4.4 | −3.7 | 950 | 6.1 | −2.3 |
03 | 975 | 3.1 | −2.7 | 950 | 7.4 | −3.7 | |
06 | 975 | 3.4 | −2.3 | 900 | 7.5 | −4.1 | |
09 | 950 | 4.9 | −2.1 | 925 | 6.5 | −2.6 | |
12 | 925 | 5.5 | −1.0 | 925 | 7.6 | −2.2 | |
Hendijan | 00 | 975 | 5.1 | −1.5 | 975 | 6.8 | −1.4 |
03 | 950 | 5.5 | −1.4 | 975 | 7.0 | −1.0 | |
06 | 950 | 7.3 | −0.5 | 950 | 8.3 | −1.9 | |
09 | 850 | 12.8 | −1.7 | 925 | 7.3 | −2.5 | |
12 | 875 | 5.9 | −1.1 | ||||
Mahshahr | 00 | 975 | 3.9 | −1.4 | 950 | 7.1 | −1.9 |
03 | 975 | 4.0 | −0.7 | 950 | 7.3 | −2.4 | |
06 | 875 | 9.8 | −0.2 | 950 | 8.2 | −3.0 | |
09 | 875 | 11.9 | −2.3 | 925 | 8.6 | −4.0 | |
12 | 850 | 13.4 | −1.5 | 925 | 5.9 | −1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parno, R.; Meshkatee, A.-H.; Mobarak Hassan, E.; Hamzeh, N.H.; Chel Gee Ooi, M.; Habibi, M. Investigating the Role of the Low-Level Jet in Two Winters Severe Dust Rising in Southwest Iran. Atmosphere 2024, 15, 400. https://doi.org/10.3390/atmos15040400
Parno R, Meshkatee A-H, Mobarak Hassan E, Hamzeh NH, Chel Gee Ooi M, Habibi M. Investigating the Role of the Low-Level Jet in Two Winters Severe Dust Rising in Southwest Iran. Atmosphere. 2024; 15(4):400. https://doi.org/10.3390/atmos15040400
Chicago/Turabian StyleParno, Rahman, Amir-Hussain Meshkatee, Elham Mobarak Hassan, Nasim Hossein Hamzeh, Maggie Chel Gee Ooi, and Maral Habibi. 2024. "Investigating the Role of the Low-Level Jet in Two Winters Severe Dust Rising in Southwest Iran" Atmosphere 15, no. 4: 400. https://doi.org/10.3390/atmos15040400
APA StyleParno, R., Meshkatee, A. -H., Mobarak Hassan, E., Hamzeh, N. H., Chel Gee Ooi, M., & Habibi, M. (2024). Investigating the Role of the Low-Level Jet in Two Winters Severe Dust Rising in Southwest Iran. Atmosphere, 15(4), 400. https://doi.org/10.3390/atmos15040400