Variability of Aerosol Optical Depth and Altitude for Key Aerosol Types over Southern West Africa via CALIPSO/CALIOP Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Area
2.2. Sun Photometer Observations
2.3. CALIOP Observations
3. Results
3.1. Aerosol Optical Depth and Angström Exponent
3.2. Aerosol Optical Depth Annual Cycle
3.3. Angström Exponent and CALIOP Aerosol Type
3.4. Altitude of the Transport
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate Forcing by Anthropogenic Aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 2006, 6, 613–666. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A. Acute Respiratory Effects of Particulate Air Pollution. Annu. Rev. Public Health 1994, 15, 107–132. [Google Scholar] [CrossRef]
- Burnett, R.T.; Pope, C.A., III; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.S.; Singh, G.; Hubbell, B.; Brauer, M.; et al. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Environ. Health Perspect. 2014, 122, 397–403. [Google Scholar] [CrossRef]
- Carlson, T. Synoptic histories of three African easterly waves during the summers of 1968 and 1969. Mon. Weather Rev. 1969, 97, 256–276. [Google Scholar] [CrossRef]
- Carlson, T.; Prospero, J.S. The large scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteorol. Climatol. 1972, 11, 283–297. [Google Scholar] [CrossRef]
- Prospero, J.M.; Carlson, T.N. Saharan air outbreaks over the tropical North Atlantic. Pure Appl. Geophys. 1980, 119, 677–691. [Google Scholar] [CrossRef]
- Swap, R.; Garstang, M.; Greco, S.; Talbot, R.; Kållberg, P. Saharan dust in the Amazon Basin. Tellus B Chem. Phys. Meteorol. 1992, 44, 133–149. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Tanre, D.; Ginoux, P.; Fan, S. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer ( MODIS) spacecraft over the Atlantic ocean. J. Geophys. Res. Atmos. 2005, 110, D10S12. [Google Scholar] [CrossRef]
- Ben-Ami, Y.; Koren, I.; Rudich, Y.; Artaxo, P.; Martin, S.T.; Andreae, M.O. Transport of North African dust from the Bodélé depression to the Amazon Basin: A case study. Atmos. Chem. Phys. 2010, 10, 7533–7544. [Google Scholar] [CrossRef]
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Contribution of the world’s main dust source regions to the global cycle of desert dust. Atmos. Chem. Phys. 2021, 21, 8169–8193. [Google Scholar] [CrossRef]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar] [CrossRef]
- Bond, T.C. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 2004, 109, D14. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- Keita, S.; Liousse, C.; Assamoi, E.M.; Doumbia, T.; N’Datchoh, E.T.; Gnamien, S.; Elguindi, N.; Granier, C.; Yoboué, V. African anthropogenic emissions inventory for gases and particles from 1990 to 2015. Earth Syst. Sci. Data 2021, 13, 3691–3705. [Google Scholar] [CrossRef]
- Liousse, C.; Assamoi, E.; Criqui, P.; Granier, C.; Rosset, R. Explosive growth in African combustion emissions from 2005 to 2030. Environ. Res. Lett. 2014, 9, 035003. [Google Scholar] [CrossRef]
- Knippertz, P.; Evans, M.J.; Field, P.R.; Fink, A.H.; Liousse, C.; Marsham, J.H. The possible role of local air pollution in climate change in West Africa. Nat. Clim. Chang. 2015, 5, 815–822. [Google Scholar] [CrossRef]
- Nicholson, S.E. The ITCZ and the Seasonal Cycle over Equatorial Africa. Bull. Am. Meteorol. Soc. 2018, 99, 337–348. [Google Scholar] [CrossRef]
- Knippertz, P.; Coe, H.; Chiu, J.C.; Evans, M.J.; Fink, A.H.; Kalthoff, N.; Liousse, C.; Mari, C.; Allan, R.P.; Brooks, B.; et al. The DACCIWA Project: Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa. Bull. Am. Meteorol. Soc. 2015, 96, 1451–1460. [Google Scholar] [CrossRef]
- Chudeau, R. Le climat de l’Afrique occidentale et équatoriale. Ann. Geogr. 1916, 25, 429–462. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate of the Sahel and West Africa. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- McTainsh, G. Harmattan dust deposition in northern Nigeria. Nature 1980, 286, 587–588. [Google Scholar] [CrossRef]
- Adeyefa, Z.D.; Holmgren, B.; Adedokun, J.A. Spectral solar irradiance under Harmattan conditions. Renew. Energy 1995, 6, 989–996. [Google Scholar] [CrossRef]
- Engelstaedter, S.; Washington, R. Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res. Atmos. 2007, 112, D3. [Google Scholar] [CrossRef]
- Klose, M.; Shao, Y.; Karremann, M.K.; Fink, A.H. Sahel dust zone and synoptic background. Geophys. Res. Lett. 2010, 37, 9. [Google Scholar] [CrossRef]
- Knippertz, P.; Todd, M. The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. Atmosphere 2010, 115, D12117. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, N.; Anshumali. Global trends of columnar and vertically distributed properties of aerosols with emphasis on dust, polluted dust and smoke–inferences from 10-year long CALIOP observations. Remote. Sens. Environ. 2018, 208, 120–132. [Google Scholar] [CrossRef]
- Djossou, J.; Léon, J.F.; Akpo, A.B.; Liousse, C.; Yoboué, V.; Bedou, M.; Bodjrenou, M.; Chiron, C.; Galy-Lacaux, C.; Gardrat, E.; et al. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (Côte d’Ivoire). Atmos. Chem. Phys. 2018, 18, 6275–6291. [Google Scholar] [CrossRef]
- Léon, J.F.; Akpo, A.B.; Bedou, M.; Djossou, J.; Bodjrenou, M.; Yoboué, V.; Liousse, C. PM2.5 surface concentrations in southern West African urban areas based on sun photometer and satellite observations. Atmos. Chem. Phys. 2021, 21, 1815–1834. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, C.; Prospero, J.M. Large-scale effect of aerosols on precipitation in the West African Monsoon region. Q. J. R. Meteorol. Soc. 2009, 135, 581–594. [Google Scholar] [CrossRef]
- Yoon, J.H.; Rasch, P.J.; Wang, H.; Vinoj, V.; Ganguly, D. The role of carbonaceous aerosols on short-term variations of precipitation over North Africa. Atmos. Sci. Lett. 2016, 17, 407–414. [Google Scholar] [CrossRef]
- Pante, G.; Knippertz, P.; Fink, A.H.; Kniffka, A. The potential of increasing man-made air pollution to reduce rainfall over southern West Africa. Atmos. Chem. Phys. 2021, 21, 35–55. [Google Scholar] [CrossRef]
- Redelsperger, J.L.; Thorncroft, C.D.; Diedhiou, A.; Lebel, T.; Parker, D.J.; Polcher, J. African Monsoon Multidisciplinary Analysis: An International Research Project and Field Campaign. Bull. Am. Meteorol. Soc. 2006, 87, 1739–1746. [Google Scholar] [CrossRef]
- Haywood, J.M.; Pelon, J.; Formenti, P.; Bharmal, N.; Brooks, M.; Capes, G.; Chazette, P.; Chou, C.; Christopher, S.; Coe, H.; et al. Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0. J. Geophys. Res. 2008, 113, D23. [Google Scholar] [CrossRef]
- Peltre, P. Le V Baoulé: Côte d’Ivoire Centrale, Héritage Géomorpho Logique et Paléoclimatique dans le Tracé du Contact Forêt-Savane. Ph.D. Thesis, Éditions de l’Office de la Recherche Scientifique et Technique Outre-Mer, Bondy, France, 1977. [Google Scholar]
- Dupont, L.M.; Weinelt, M. Vegetation history of the savanna corridor between the Guinean and the Congolian rain forest during the last 150,000 years. Veg. Hist. Archaeobotany 1996, 5, 273–292. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Todd, M.C.; Washington, R.; Martins, J.V.; Dubovik, O.; Lizcano, G.; M’Bainayel, S.; Engelstaedter, S. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005. J. Geophys. Res. Atmos. 2007, 112, D6. [Google Scholar] [CrossRef]
- Sayre, R.; Comer, P.J.; Hak, J.J.; Josse, C.; Bow, J.; Warner, H.; Larwanou, M.; Kelbessa, E.; Bekele, T.; Kehl, H.; et al. A New Map of Standardized Terrestrial Ecosystems of Africa. In African Geographical Review; Association of American Geographers: Washington, DC, USA, 2013; pp. 1–24. [Google Scholar]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote. Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Giles, D.M.; Slutsker, I.; Sinyuk, A.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Reid, J.S.; Sayer, A.M.; et al. AERONET Remotely Sensed Measurements and Retrievals of Biomass Burning Aerosol Optical Properties During the 2015 Indonesian Burning Season. J. Geophys. Res. Atmos. 2019, 124, 4722–4740. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 2006, 111, D11. [Google Scholar] [CrossRef]
- Hamonou, E.; Chazette, P.; Balis, D.; Dulac, F.; Schneider, X.; Galani, E.; Ancellet, G.; Papayannis, A. Characterization of the Vertical Structure of Saharan Dust Export to the Mediterranean Basin. J. Geophys. Res. Atmos. 1999, 104, 22257–22270. [Google Scholar] [CrossRef]
- Léon, J.F.; Derimian, Y.; Chiapello, I.; Tanré, D.; Podvin, T.; Chatenet, B.; Diallo, A.; Deroo, C. Aerosol Vertical Distribution and Optical Properties over M’Bour (16.96∘ W; 14.39∘ N), Senegal from 2006 to 2008. Atmos. Chem. Phys. 2009, 9, 9249–9261. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Atmos. 2006, 111, D7. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kambezidis, H.D.; Hatzianastassiou, N.; Kosmopoulos, P.G.; Badarinath, K.V.S. Aerosol climatology: On the discrimination of aerosol types over four AERONET sites. Atmos. Chem. Phys. Discuss. 2007, 2007, 6357–6411. [Google Scholar] [CrossRef]
- Toledano, C.; Wiegner, M.; Groß, S.; Freudenthaler, V.; Gasteiger, J.; Müller, D.; Müller, D.; Schladitz, A.; Weinzierl, B.; Torres, B.; et al. Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2. Tellus B Chem. Phys. Meteorol. 2011, 63, 635–648. [Google Scholar] [CrossRef]
- Verma, S.; Prakash, D.; Ricaud, P.; Payra, S.; Attié, J.L.; Soni, M. A New Classification of Aerosol Sources and Types as Measured over Jaipur, India. Aerosol Air Qual. Res. 2015, 15, 985–993. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Huang, J.P.; Liu, J.J.; Chen, B.; Nasiri, S.L. Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys. 2015, 15, 11653–11665. [Google Scholar] [CrossRef]
- Huang, Z.; Nee, J.B.; Chiang, C.W.; Zhang, S.; Jin, H.; Wang, W.; Zhou, T. Real-Time Observations of Dust–Cloud Interactions Based on Polarization and Raman Lidar Measurements. Remote. Sens. 2018, 10, 1017. [Google Scholar] [CrossRef]
- Liu, Z.; Kar, J.; Zeng, S.; Tackett, J.; Vaughan, M.; Avery, M.; Pelon, J.; Getzewich, B.; Lee, K.P.; Magill, B.; et al. Discriminating between clouds and aerosols in the CALIOP version 4.1 data products. Atmos. Meas. Tech. 2019, 12, 703–734. [Google Scholar] [CrossRef]
- Niu, H.; Kang, S.; Gao, W.; Wang, Y.; Paudyal, R. Vertical distribution of the Asian tropopause aerosols detected by CALIPSO. Environ. Pollut. 2019, 253, 207–220. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Yu, H.; Chin, M.; Winker, D.M.; Omar, A.H.; Liu, Z.; Kittaka, C.; Diehl, T. Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. J. Geophys. Res. 2010, 115, D4. [Google Scholar] [CrossRef]
- Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J.J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, S.; et al. A 4-D climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products. Atmos. Meas. Tech. 2013, 6, 1287–1314. [Google Scholar] [CrossRef]
- Koffi, B.; Schultz, M.; Breon, F.M.; Dentener, F.; Steensen, B.; Griesfeller, J.; Winker, D.; Balkanski, B.; Bauer, S.E.; Bellouin, N.; et al. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. J. Geophys. Res.-Atmos. 2016, 121, 7254–7283. [Google Scholar] [CrossRef]
- Mona, L.; Liu, Z.; Müller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M. Lidar Measurements for Desert Dust Characterization: An Overview. Adv. Meteorol. 2012, 2012, e356265. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Y.; Voulgarakis, A.; Wang, T.; Li, M.; Wang, Y.; Xie, M.; Zhuang, B.; Li, S. An agricultural biomass burning episode in eastern China: Transport, optical properties, and impacts on regional air quality. J. Geophys. Res. Atmos. 2017, 122, 2304–2324. [Google Scholar] [CrossRef]
- Senghor, H.; Machu, E.; Hourdin, F.; Gaye, A.T. Seasonal cycle of desert aerosols in western Africa: Analysis of the coastal transition with passive and active sensors. Atmos. Chem. Phys. 2017, 17, 8395–8410. [Google Scholar] [CrossRef]
- Léon, J.F.; Martiny, N.; Merlet, S. A Multi Linear Regression Model to Derive Dust PM10 in the Sahel Using AERONET Aerosol Optical Depth and CALIOP Aerosol Layer Products. Remote. Sens. 2020, 12, 3099. [Google Scholar] [CrossRef]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef]
- Hayasaka, T.; Meguro, Y.; Sasano, Y.; Takamura, T. Stratification and Size Distribution of Aerosols Retrieved from Simultaneous Measurements with Lidar, a SunPhotometer, and an Aureolemeter. Appl. Opt. 1998, 37, 961–970. [Google Scholar] [CrossRef]
- Hayasaka, T.; Satake, S.; Shimizu, A.; Sugimoto, N.; Matsui, I.; Aoki, K.; Muraji, Y. Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds-East Asia Regional Experiment 2005. J. Geophys. Res. Atmos. 2007, 112, D22. [Google Scholar] [CrossRef]
- Washington, R. Atmospheric Controls on Mineral Dust Emission from the Bodélé Depression, Chad: The Role of the Low Level Jet. Geophys. Res. Lett. 2005, 32, 17. [Google Scholar] [CrossRef]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. 2006, 111, G2. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Lagoudakis, E. Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 2009, 6, 849–866. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust Aerosols. J. Geophys. Res. 1999, 104, 31333. [Google Scholar] [CrossRef]
- Haslett, S.L.; Taylor, J.W.; Evans, M.; Morris, E.; Vogel, B.; Dajuma, A.; Brito, J.; Batenburg, A.M.; Borrmann, S.; Schneider, J.; et al. Remote biomass burning dominates southern West African air pollution during the monsoon. Atmos. Chem. Phys. 2019, 19, 15217–15234. [Google Scholar] [CrossRef]
- Deroubaix, A.; Flamant, C.; Menut, L.; Siour, G.; Mailler, S.; Turquety, S.; Briant, R.; Khvorostyanov, D.; Crumeyrolle, S. Interactions of atmospheric gases and aerosols with the monsoon dynamics over the Sudano-Guinean region during AMMA. Atmos. Chem. Phys. 2018, 18, 445–465. [Google Scholar] [CrossRef]
- Flamant, C.; Deroubaix, A.; Chazette, P.; Brito, J.; Gaetani, M.; Knippertz, P.; Fink, A.H.; Coetlogon, G.d.; Menut, L.; Colomb, A.; et al. Aerosol distribution in the northern Gulf of Guinea: Local anthropogenic sources, long-range transport, and the role of coastal shallow circulations. Atmos. Chem. Phys. 2018, 18, 12363–12389. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Slutsker, I.; Chatenet, B.; Pinker, R.T. Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites. Geophys. Res. Lett. 2002, 29, 30-1–30-4. [Google Scholar] [CrossRef]
Station Name | Geographical Location | Period | N | Ombrotype |
---|---|---|---|---|
Agoufou | (15.3° N, 1.5° W) | October 2002–April 2011 | 2000 | Arid |
Banizoumbou | (13.5° N, 2.7° E) | October 1995–April 2022 | 6478 | Semi-arid |
CATUC_Bamenda | (5.9° N, 10.2° E) | December 2016–January 2022 | 796 | Humid |
DMN_Maine_Soroa | (13.2° N,12.0° E) | November 2005–July 2010 | 1011 | Arid |
Djougou | (9.8° N, 1.6° E) | February 2004–May 2007 | 652 | Sub-humid |
IER_Cinzana | (13.3° N, 5.9° W) | June 2004–Octpber 2021 | 4474 | Dry |
Ilorin | (8.5° N, 4.7° E) | April 1998–March 2021 | 3892 | Sub-humid |
Koforidua_ANUC | (6.1° N, 0.3° W) | December 2015–January 2022 | 1353 | Sub-humid |
LAMTO-STATION | (6.2° N, 5.0° W) | November 1997–November 2021 | 1306 | Sub-humid |
Ouagadougou | (12.4° N, 1.5° W) | November 1994–September 2007 | 1724 | Dry |
Zinder_Airport | (13.8° N, 9.0° E) | May 2009–April 2022 | 2873 | Semi-arid |
Station Name | AOD (±log(SD)) | AE (±SD) | Dust (%) | Pollution (%) |
---|---|---|---|---|
Agoufou | 0.38 (±0.74) | 0.27 (±0.23) | 65.3 | 0.4 |
Banizoumbou | 0.37 (±0.71) | 0.35 (±0.25) | 51.2 | 0.8 |
CATUC_Bamenda | 0.40 (±0.78) | 1.06 (±0.37) | 3.6 | 44.6 |
DMN_Maine_Soroa | 0.35 (±0.68) | 0.39 (±0.31) | 49.8 | 2.3 |
Djougou | 0.53 (±0.61) | 0.58 (±0.36) | 26.4 | 11.0 |
IER_Cinzana | 0.35 (±0.68) | 0.34 (±0.25) | 51.3 | 0.7 |
Ilorin | 0.49 (±0.71) | 0.72 (±0.36) | 12.0 | 15.1 |
Koforidua_ANUC | 0.49 (±0.69) | 0.85 (±0.35) | 3.5 | 26.5 |
LAMTO-STATION | 0.41 (±0.63) | 0.84 (±0.35) | 5.0 | 25.0 |
Ouagadougou | 0.39 (±0.65) | 0.41 (±0.26) | 40.4 | 1.5 |
Zinder_Airport | 0.38 (±0.72) | 0.35 (±0.25) | 51.4 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niamien, A.F.; Léon, J.-F.; Adon, M.; Rajot, J.-L.; Feron, A.; Yoboué, V. Variability of Aerosol Optical Depth and Altitude for Key Aerosol Types over Southern West Africa via CALIPSO/CALIOP Observations. Atmosphere 2024, 15, 396. https://doi.org/10.3390/atmos15040396
Niamien AF, Léon J-F, Adon M, Rajot J-L, Feron A, Yoboué V. Variability of Aerosol Optical Depth and Altitude for Key Aerosol Types over Southern West Africa via CALIPSO/CALIOP Observations. Atmosphere. 2024; 15(4):396. https://doi.org/10.3390/atmos15040396
Chicago/Turabian StyleNiamien, Adou F., Jean-François Léon, Marcellin Adon, Jean-Louis Rajot, Anaïs Feron, and Véronique Yoboué. 2024. "Variability of Aerosol Optical Depth and Altitude for Key Aerosol Types over Southern West Africa via CALIPSO/CALIOP Observations" Atmosphere 15, no. 4: 396. https://doi.org/10.3390/atmos15040396
APA StyleNiamien, A. F., Léon, J. -F., Adon, M., Rajot, J. -L., Feron, A., & Yoboué, V. (2024). Variability of Aerosol Optical Depth and Altitude for Key Aerosol Types over Southern West Africa via CALIPSO/CALIOP Observations. Atmosphere, 15(4), 396. https://doi.org/10.3390/atmos15040396