Assessment of the Sensitivity of the Mean Climate Simulation over West Africa to Planetary Boundary Layer Parameterization Using RegCM5 Regional Climate Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
Model | Set Up and Simulation Schemes |
---|---|
Dynamics | Non-hydrostatic, height-based coordinate MOLOCH [37,38] |
Horizontal resolution | 25 km × 25 km |
Vertical levels | 18 |
Period | 2002–2004 |
Initial condition | ERA-Interim reanalysis 0.75° × 0.75° resolution at 6-h intervals |
Lateral boundary condition | OISST (seminal) |
Microphysics scheme | W5MS [48] |
Land surface scheme | CLM4.5 [42] |
Vegetation cover | Satellite phenology (SP) [43] |
Runoff scheme | Variable infiltration capacity [45] |
Radiative transfer scheme | RRTM [46] |
Convection scheme (ocean and land) | Emanuel [47] |
Ocean flux scheme | Zeng [49] |
PBL schemes | 1-Holtslag [34] |
2-UW [35] |
2.1.1. Holtslag PBL Parameterizations
2.1.2. University of Washington (UW) PBL Parameterizations
2.2. Data and Method
3. Results
3.1. Rainfall
3.1.1. Rainfall Climatology
3.1.2. Rainfall Annual Cycle
3.2. Temperature
Temperature Climatology
3.3. Cloud Cover
3.4. Boundary Layer Height
3.5. Vertical Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Code Availability
References
- Sánchez, J.G. Spectral Study of Turbulence in the Surface Boundary Layer at Brazilian Antarctic Station. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Sellers, P.J.; Shuttleworth, W.J.; Dorman, J.L.; Dalcher, A.; Roberts, J.M. Calibrating the Simple Biosphere Model for Amazonian Tropical Forest Using Field and Remote Sensing Data. Part I: Average Calibration with Field Data. J. Appl. Meteor. 1989, 28, 727–759. [Google Scholar] [CrossRef]
- Steiner, A.L.; Pal, J.S.; Rauscher, S.A.; Bell, J.L.; Diffenbaugh, N.S.; Boone, A.; Sloan, L.C.; Giorgi, F. Land Surface Coupling in Regional Climate Simulations of the West African Monsoon. Clim. Dyn. 2009, 33, 869–892. [Google Scholar] [CrossRef]
- Llopart, M.; Domingues, L.M.; Torma, C.; Giorgi, F.; da Rocha, R.P.; Ambrizzi, T.; Reboita, M.S.; Alves, L.M.; Coppola, E.; da Silva, M.L.; et al. Assessing Changes in the Atmospheric Water Budget as Drivers for Precipitation Change over Two CORDEX-CORE Domains. Clim. Dyn. 2021, 57, 1615–1628. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Pal, J.S.; Mei, R.; Bonan, G.B.; Levis, S.; Thornton, P.E. On the Development of a Coupled Regional Climate–Vegetation Model RCM–CLM–CN–DV and Its Validation in Tropical Africa. Clim. Dyn. 2015, 46, 515–539. [Google Scholar] [CrossRef]
- Haarsma, R.J.; Mitchell, J.F.B.; Senior, C.A. Tropical Disturbances in a GCM. Clim. Dyn. 1993, 8, 247–257. [Google Scholar] [CrossRef]
- Alo, C.A.; Wang, G. Hydrological Impact of the Potential Future Vegetation Response to Climate Changes Projected by 8 GCMs. J. Geophys. Res. 2008, 113, G03011. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ajayi, V.O.; Adejare, A.T.; Adeyeri, O.E.; Gbode, I.E.; Ogunjobi, K.O.; Nikulin, G.; Abolude, A.T. Evaluation of Rainfall Simulations over West Africa in Dynamically Downscaled CMIP5 Global Circulation Models. Theor. Appl. Climatol. 2018, 132, 437–450. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Introduction to Special Section: Regional Climate Modeling Revisited. J. Geophys. Res. 1999, 104, 6335–6352. [Google Scholar] [CrossRef]
- Paeth, H.; Girmes, R.; Menz, G.; Hense, A. Improving Seasonal Forecasting in the Low Latitudes. Mon. Weather Rev. 2006, 134, 1859–1879. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.d.N.; Al-Khalaf, A.K.; Saeed, F. Best Convective Parameterization Scheme within RegCM4 to Downscale CMIP5 Multi-Model Data for the CORDEX-MENA/Arab Domain. Theor. Appl. Climatol. 2016, 124, 807–823. [Google Scholar] [CrossRef]
- KhayatianYazdi, F.; Kamali, G.; Mirrokni, S.M.; Memarian, M.H. Sensitivity Evaluation of the Different Physical Parameterizations Schemes in Regional Climate Model RegCM4.5 for Simulation of Air Temperature and Precipitation over North and West of Iran. Dyn. Atmos. Ocean. 2021, 93, 101199. [Google Scholar] [CrossRef]
- Lagare, M.C.; Coronel, R.; Cruz, F.; Narisma, G.T.; Villafuerte, M.; Tibay, J. Impacts of Planetary Boundary Layer Parameterization in RegCM4.7 on the Intensity and Structure of Simulated Tropical Cyclones over the Philippines. Clim. Dyn. 2022, 59, 2915–2928. [Google Scholar] [CrossRef]
- Ozturk, T.; Altinsoy, H.; Türkeș, M.; Kurnaz, M. Simulation of Temperature and Precipitation Climatology for the Central Asia CORDEX Domain Using RegCM 4.0. Clim. Res. 2012, 52, 63–76. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.; Bi, X.; Elguindi, N.; Diro, G.; Nair, V.; Giuliani, G.; et al. RegCM4: Model Description and Preliminary Tests over Multiple CORDEX Domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Güttler, I.; Branković, Č.; O’Brien, T.A.; Coppola, E.; Grisogono, B.; Giorgi, F. Sensitivity of the Regional Climate Model RegCM4.2 to Planetary Boundary Layer Parameterisation. Clim. Dyn. 2014, 43, 1753–1772. [Google Scholar] [CrossRef]
- Anwar, S.A.; Reboita, M.S.; Llopart, M. On the Sensitivity of the Amazon Surface Climate to Two Land-surface Hydrology Schemes Using a High-resolution Regional Climate Model (RegCM4). Int. J. Climatol. 2022, 42, 2311–2327. [Google Scholar] [CrossRef]
- Silva, L.; Cho-Luck, L.; Silva, J.; Prestrelo de Oliveira, C.; Santos e Silva, C. Assessing of Two Planetary Boundary Layer Schemes in RegCM4 Model Over the Tropical Region of Brazil. Pure Appl. Geophys. 2023, 180, 2901–2914. [Google Scholar] [CrossRef]
- Mei, R.; Wang, G.; Gu, H. Summer Land–Atmosphere Coupling Strength over the United States: Results from the Regional Climate Model RegCM4–CLM3.5. J. Hydrometeorol. 2013, 14, 946–962. [Google Scholar] [CrossRef]
- Anwar, S.A.; Srivastava, A.; Zerouali, B. On the Role of Land-Surface Hydrology Schemes in Simulating the Daily Maximum and Minimum Air Temperatures of Australia Using a Regional Climate Model (RegCM4). J. Water Clim. Change 2023, 14, 989–1011. [Google Scholar] [CrossRef]
- Afiesimama, E.A.; Pal, J.S.; Abiodun, B.J.; Gutowski, W.J.; Adedoyin, A. Simulation of West African Monsoon Using the RegCM3. Part I: Model Validation and Interannual Variability. Theor. Appl. Climatol. 2006, 86, 23–37. [Google Scholar] [CrossRef]
- Anwar, S.A. Understanding the Contribution of the Vegetation-Runoff System for Simulating the African Climate Using the RegCM4 Model. Theor. Appl. Climatol. 2019, 138, 1219–1230. [Google Scholar] [CrossRef]
- Anwar, S.A.; Diallo, I. A RCM Investigation of the Influence of Vegetation Status and Runoff Scheme on the Summer Gross Primary Production of Tropical Africa. Theor. Appl. Climatol. 2021, 145, 1407–1420. [Google Scholar] [CrossRef]
- Koné, B.; Diedhiou, A.; Touré, N.E.; Sylla, M.B.; Giorgi, F.; Anquetin, S.; Bamba, A.; Diawara, A.; Kobea, A.T. Sensitivity Study of the Regional Climate Model RegCM4 to Different Convective Schemes over West Africa. Earth Syst. Dyn. 2018, 9, 1261–1278. [Google Scholar] [CrossRef]
- Kouassi, A.A.; Kone, B.; Silue, S.; Dajuma, A.; N’datchoh, T.E.; Adon, M.; Diedhiou, A.; Yoboue, V. Sensitivity Study of the RegCM4′s Surface Schemes in the Simulations of West Africa Climate. Atmos. Clim. Sci. 2022, 12, 86–104. [Google Scholar] [CrossRef]
- Wang, G.; Eltahir, E.A.B. Biosphere-Atmosphere Interactions over West Africa. II: Multiple Climate Equilibria. Q. J. R. Meteorol. Soc. 2007, 126, 1261–1280. [Google Scholar] [CrossRef]
- Misra, V. Regional Simulation of Interannual Variability over South America. J. Geophys. Res. 2002, 107, 8036. [Google Scholar] [CrossRef]
- Kang, H.; Hong, S. Sensitivity of the Simulated East Asian Summer Monsoon Climatology to Four Convective Parameterization Schemes. J. Geophys. Res. 2008, 113, 2007JD009692. [Google Scholar] [CrossRef]
- Dutta, U.; Chaudhari, H.S.; Hazra, A.; Pokhrel, S.; Saha, S.K.; Veeranjaneyulu, C. Role of Convective and Microphysical Processes on the Simulation of Monsoon Intraseasonal Oscillation. Clim. Dyn. 2020, 55, 2377–2403. [Google Scholar] [CrossRef]
- Bao, Y. Simulations of Summer Monsoon Climate over East Asia with a Regional Climate Model (RegCM) Using Tiedtke Convective Parameterization Scheme (CPS). Atmos. Res. 2013, 134, 35–44. [Google Scholar] [CrossRef]
- Anwar, S.A.; Zakey, A.S.; Robaa, S.M.; Abdel Wahab, M.M. The Influence of Two Land-Surface Hydrology Schemes on the Regional Climate of Africa Using the RegCM4 Model. Theor. Appl. Climatol. 2019, 136, 1535–1548. [Google Scholar] [CrossRef]
- Baas, P.; Bosveld, F.C.; Burgers, G. The Impact of Atmospheric Stability on the Near-surface Wind over Sea in Storm Conditions. Wind Energy 2016, 19, 187–198. [Google Scholar] [CrossRef]
- Flaounas, E.; Bastin, S.; Janicot, S. Regional Climate Modelling of the 2006 West African Monsoon: Sensitivity to Convection and Planetary Boundary Layer Parameterisation Using WRF. Clim. Dyn. 2011, 36, 1083–1105. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; De Bruijn, E.I.F.; Pan, H.-L. A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting. Mon. Wea. Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Bretherton, C.S.; McCaa, J.R.; Grenier, H. A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results. Mon. Wea. Rev. 2004, 132, 864–882. [Google Scholar] [CrossRef]
- Komkoua Mbienda, A.J.; Guenang, G.M.; Kaissassou, S.; Tchakoutio Sandjon, A.; Tanessong, R.S.; Matho Lontio, S.L.; Vondou, D.A.; Yepdo Djomou, Z. Boundary Layer Schemes in the Regional Climate Model RegCM4.6 over Central Africa. Clim. Dyn. 2022, 58, 691–709. [Google Scholar] [CrossRef]
- Buzzi, A.; Davolio, S.; Malguzzi, P.; Drofa, O.; Mastrangelo, D. Heavy Rainfall Episodes over Liguria in Autumn 2011: Numerical Forecasting Experiments. Nat. Hazards Earth Syst. Sci. 2014, 14, 1325–1340. [Google Scholar] [CrossRef]
- Trini Castelli, S.; Bisignano, A.; Donateo, A.; Landi, T.C.; Martano, P.; Malguzzi, P. Evaluation of the Turbulence Parametrization in the MOLOCH Meteorological Model. Q. J. R. Meteorol. Soc. 2020, 146, 124–140. [Google Scholar] [CrossRef]
- Coppola, E.; Raffaele, F.; Giorgi, F.; Giuliani, G.; Xuejie, G.; Ciarlo, J.M.; Sines, T.R.; Torres-Alavez, J.A.; Das, S.; Di Sante, F.; et al. Climate Hazard Indices Projections Based on CORDEX-CORE, CMIP5 and CMIP6 Ensemble. Clim. Dyn. 2021, 57, 1293–1383. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Giuliani, G.; Ciarl, J.M.; Pichelli, E.; Nogherotto, R.; Raffaele, F.; Malguzzi, P.; Davolio, S.; Stocchi, P.; et al. The Fifth Generation Regional Climate Modeling System, RegCM5: Description and Illustrative Examples at Parameterized Convection and Convection-Permitting Resolutions. J. Geophys. Res. Atmos. 2023, 128, e2022JD038199. [Google Scholar] [CrossRef]
- Oleson, K.; Lawrence, M.; Bonan, B.; Drewniak, B.; Huang, M.; Koven, D.; Levis, S.; Li, F.; Riley, J.; Subin, M.; et al. Technical Description of Version 4.5 of the Community Land Model (CLM); NCAR: Boulder, CO, USA, 2013. [Google Scholar] [CrossRef]
- Grenier, H.; Bretherton, C.S. A Moist PBL Parameterization for Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine Boundary Layers. Mon. Wea. Rev. 2001, 129, 357–377. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Zeng, X.; Yang, Z.-L.; Levis, S.; Sakaguchi, K.; et al. Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model: Parameterization Improvements and Functional and Structural Advances. J. Adv. Model. Earth Syst. 2011, 3, M03001. [Google Scholar] [CrossRef]
- Lawrence, P.J.; Chase, T.N. Representing a New MODIS Consistent Land Surface in the Community Land Model (CLM 3.0). J. Geophys. Res. 2007, 112, G01023. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for General Circulation Models. J. Geophys. Res. 1994, 99, 14415. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric Radiative Transfer Modeling: A Summary of the AER Codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Emanuel, K.A. A Scheme for Representing Cumulus Convection in Large-Scale Models. J. Atmos. Sci. 1991, 48, 2313–2329. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys. 1982, 20, 851. [Google Scholar] [CrossRef]
- Galperin, B.; Kantha, L.H.; Hassid, S.; Rosati, A. A Quasi-Equilibrium Turbulent Energy Model for Geophysical Flows. J. Atmos. Sci. 1988, 45, 55–62. [Google Scholar] [CrossRef]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; Hänsler, A.; et al. Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef]
- Adler, R.; Wang, J.-J.; Sapiano, M.; Huffman, G.; Bolvin, D.; Nelkin, E. NOAA CDR Program Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 1.3 (Daily); NCAR: Boulder, CO, USA, 2020. [Google Scholar]
- Dutta, U.; Hazra, A.; Chaudhari, H.S.; Saha, S.K.; Pokhrel, S.; Verma, U. Unraveling the Global Teleconnections of Indian Summer Monsoon Clouds: Expedition from CMIP5 to CMIP6. Glob. Planet. Change 2022, 215, 103873. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Coppola, E.; Mariotti, L. Uncertainties in Daily Rainfall over Africa: Assessment of Gridded Observation Products and Evaluation of a Regional Climate Model Simulation: Uncertainties in Observed and Simulated Daily Rainfall over Africa. Int. J. Climatol. 2013, 33, 1805–1817. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kalmár, T.; Pieczka, I.; Pongrácz, R. A Sensitivity Analysis of the Different Setups of the RegCM4.5 Model for the Carpathian Region. Int. J. Climatol. 2021, 41, E1180–E1201. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Ruti, P.M.; Calmanti, S.; Dell’Aquila, A. The Impact of Deep Convection on the West African Summer Monsoon Climate: A Regional Climate Model Sensitivity Study: Modeling the Impact of Deep Convection on West African Summer Monsoon. Q. J. R. Meteorol. Soc. 2011, 137, 1417–1430. [Google Scholar] [CrossRef]
- Sultan, B.; Janicot, S. The West African Monsoon Dynamics. Part II: “Preonset” “Onset” Summer Monsoon. J. Clim. 2003, 16, 3407–3427. [Google Scholar] [CrossRef]
- Diba, I.; Camara, M.; Sarr, A.B. Impacts of the Sahel-Sahara Interface Reforestation on West African Climate: Intraseasonal Variability and Extreme Precipitation Events. Adv. Meteorol. 2016, 2016, 3262451. [Google Scholar] [CrossRef]
- Cook, K.H.; Vizy, E.K. Contemporary Climate Change of the African Monsoon Systems. Curr. Clim. Change Rep. 2019, 5, 145–159. [Google Scholar] [CrossRef]
- Diallo, I.; Sylla, M.B.; Camara, M.; Gaye, A.T. Interannual Variability of Rainfall over the Sahel Based on Multiple Regional Climate Models Simulations. Theor. Appl. Climatol. 2013, 113, 351–362. [Google Scholar] [CrossRef]
- Diallo, I.; Sylla, M.B.; Giorgi, F.; Gaye, A.T.; Camara, M. Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century. Int. J. Geophys. 2012, 2012, 972896. [Google Scholar] [CrossRef]
- Nicholson, S.E. Rainfall and Atmospheric Circulation during Drought Periods and Wetter Years in West Africa. Mon. Wea. Rev. 1981, 109, 2191–2208. [Google Scholar] [CrossRef]
- Maranan, M.; Fink, A.H.; Knippertz, P. Rainfall Types over Southern West Africa: Objective Identification, Climatology and Synoptic Environment. Q. J. R. Meteorol. Soc. 2018, 144, 1628–1648. [Google Scholar] [CrossRef]
- Gbobaniyi, E.; Sarr, A.; Sylla, M.B.; Diallo, I.; Lennard, C.; Dosio, A.; Dhiédiou, A.; Kamga, A.; Klutse, N.A.B.; Hewitson, B.; et al. Climatology, Annual Cycle and Interannual Variability of Precipitation and Temperature in CORDEX Simulations over West Africa: Cordex Simulations over West Africa. Int. J. Climatol. 2014, 34, 2241–2257. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Blackburn, M. Maintenance of the African Easterly Jet. Q. J. R. Meteorol. Soc. 1999, 125, 763–786. [Google Scholar] [CrossRef]
- Ramel, R.; Gallée, H.; Messager, C. On the Northward Shift of the West African Monsoon. Clim. Dyn. 2006, 26, 429–440. [Google Scholar] [CrossRef]
- Ali, M.F.M.; Salah, Z.; Asklany, S.A.; Hassan, M.; Harhash, M.; Wahab, M.M.A. A Comparison of Three Boundary Layer Schemes for Numerical Weather Prediction. Appl. Math. Inf. Sci. 2020, 14, 1093–1101. [Google Scholar] [CrossRef]
- Konare, A.; Zakey, A.S.; Solmon, F.; Giorgi, F.; Rauscher, S.; Ibrah, S.; Bi, X. A Regional Climate Modeling Study of the Effect of Desert Dust on the West African Monsoon. J. Geophys. Res. 2008, 113, D12206. [Google Scholar] [CrossRef]
- Sylla, M.B.; Coppola, E.; Mariotti, L.; Giorgi, F.; Ruti, P.M.; Dell’Aquila, A.; Bi, X. Multiyear Simulation of the African Climate Using a Regional Climate Model (RegCM3) with the High Resolution ERA-Interim Reanalysis. Clim. Dyn. 2010, 35, 231–247. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, L.; Zheng, D.; Tao, J. Cloudiness Variations over the Qinghai-Tibet Plateau during 1971–2004. J. Geogr. Sci. 2008, 18, 142–154. [Google Scholar] [CrossRef]
- Carlson, T.N.; Prospero, J.M. The Large-Scale Movement of Saharan Air Outbreaks over the Northern Equatorial Atlantic. J. Appl. Meteor. 1972, 11, 283–297. [Google Scholar] [CrossRef]
- Flamant, C.; Chaboureau, J.-P.; Parker, D.J.; Taylor, C.M.; Cammas, J.-P.; Bock, O.; Timouk, F.; Pelon, J. Airborne Observations of the Impact of a Convective System on the Planetary Boundary Layer Thermodynamics and Aerosol Distribution in the Inter-tropical Discontinuity Region of the West African Monsoon. Q. J. R. Meteorol. Soc. 2007, 133, 1175–1189. [Google Scholar] [CrossRef]
- Ndao, S.; Rinelle, D.N.; Badiane, D.; Lenouo, A.; Sall, S.M. Study of Boundary Layer Height over West Africa. J. Geosci. Environ. Prot. 2019, 07, 179–194. [Google Scholar] [CrossRef]
- Chan, K.M.; Wood, R. The Seasonal Cycle of Planetary Boundary Layer Depth Determined Using COSMIC Radio Occultation Data: Seasonal Cycle of Pbl Depth. J. Geophys. Res. Atmos. 2013, 118, 12,422–12,434. [Google Scholar] [CrossRef]
- Wood, R.; Bretherton, C.S. Boundary Layer Depth, Entrainment, and Decoupling in the Cloud-Capped Subtropical and Tropical Marine Boundary Layer. J. Clim. 2004, 17, 3576–3588. [Google Scholar] [CrossRef]
- Wood, R.; Bretherton, C.S. On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability. J. Clim. 2006, 19, 6425–6432. [Google Scholar] [CrossRef]
Guinea Coast | Central Sahel | West Sahel | West Africa | ||
---|---|---|---|---|---|
MB (%) | MB (%) | MB (%) | MB (%) | PCC | |
Hol | −18.37 | 92.91 | −15.97 | 102.28 | 0.596 |
UW | −28.81 | 13.23 | −69.65 | −3.47 | 0.778 |
Guinea Coast | Central Sahel | West Sahel | West Africa | |||||
---|---|---|---|---|---|---|---|---|
RMSE | PCC | RMSE | PCC | RMSE | PCC | RMSE | PCC | |
Hol | 2.78 | 0.82 | 1.59 | 0.734 | 1.07 | 0.962 | 1.89 | 0.89 |
UW | 1.52 | 0.87 | 1.63 | 0.878 | 1.96 | 0.958 | 1.39 | 0.94 |
Guinea Coast | Central Sahel | West Sahel | West Africa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MB | PCC | RMSE | MB | PCC | RMSE | MB | PCC | RMSE | MB | PCC | |
Hol | 23.30 | −26.51 | 0.47 | 11.41 | 16.27 | 0.89 | 25.42 | 35.08 | 0.89 | 13.46 | −10.16 | 0.95 |
UW | 15.11 | −16.54 | 0.32 | 6.75 | −5.86 | 0.87 | 1.96 | −38.58 | 0.85 | 1.39 | −9.86 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silué, F.; Diawara, A.; Koné, B.; Diedhiou, A.; Kouassi, A.A.; Kouassi, B.K.; Yoroba, F.; Bamba, A.; Kouadio, K.; Tiémoko, D.T.; et al. Assessment of the Sensitivity of the Mean Climate Simulation over West Africa to Planetary Boundary Layer Parameterization Using RegCM5 Regional Climate Model. Atmosphere 2024, 15, 332. https://doi.org/10.3390/atmos15030332
Silué F, Diawara A, Koné B, Diedhiou A, Kouassi AA, Kouassi BK, Yoroba F, Bamba A, Kouadio K, Tiémoko DT, et al. Assessment of the Sensitivity of the Mean Climate Simulation over West Africa to Planetary Boundary Layer Parameterization Using RegCM5 Regional Climate Model. Atmosphere. 2024; 15(3):332. https://doi.org/10.3390/atmos15030332
Chicago/Turabian StyleSilué, Foungnigué, Adama Diawara, Brahima Koné, Arona Diedhiou, Adjon Anderson Kouassi, Benjamin Komenan Kouassi, Fidèle Yoroba, Adama Bamba, Kouakou Kouadio, Dro Touré Tiémoko, and et al. 2024. "Assessment of the Sensitivity of the Mean Climate Simulation over West Africa to Planetary Boundary Layer Parameterization Using RegCM5 Regional Climate Model" Atmosphere 15, no. 3: 332. https://doi.org/10.3390/atmos15030332
APA StyleSilué, F., Diawara, A., Koné, B., Diedhiou, A., Kouassi, A. A., Kouassi, B. K., Yoroba, F., Bamba, A., Kouadio, K., Tiémoko, D. T., Yapo, A. L. M., Koné, D. I., & Famien, A. M. L. (2024). Assessment of the Sensitivity of the Mean Climate Simulation over West Africa to Planetary Boundary Layer Parameterization Using RegCM5 Regional Climate Model. Atmosphere, 15(3), 332. https://doi.org/10.3390/atmos15030332