Full-Size Experimental Measurement of Combustion and Destruction Efficiency in Upstream Flares and the Implications for Control of Methane Emissions from Oil and Gas Production
Abstract
:1. Introduction
2. Methods
2.1. Experimental Apparatus
- NHVvg = Flare vent gas net heating value, BTU/scf.
- i = Individual combustible component in flare vent gas.
- n = Number of individual combustible components in flare vent gas.
- %Xvg,i = Volume percentage of combustible component i in flare vent gas.
- NHVi = Reported net heating value of combustible component i, BTU/scf.
2.2. Analytical Protocol
- where XCO2, XCO and XTHC are dry gas concentrations of CO2 in percentage, CO and total hydrocarbons in PPM as dry CH4, respectively.
2.3. Experimental Design
- MFR = Calculated momentum flux ratio, unitless.
- ρvg = Density of flare waste gas, lb/scf.
- Vvg = Flare vent gas velocity, ft/s.
- Vwind = Wind velocity, ft/s.
- rair = Density of ambient air (constant of 0.07492), lb/scf.
3. Results
3.1. Relationship between CE and DRE Values
3.2. Impact of Net Heating Value on DRE
3.3. Influence of Flow and Crosswind on DRE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Etminan, M.; Myhre, G.; Highwood, E.J.; Shine, K.P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43, 612–614. [Google Scholar] [CrossRef]
- Ocko, I.B.; Sun, T.; Shindell, D.; Oppenheimer, M.; Hristov, A.N.; Pacala, S.W.; Mauzerall, D.L.; Xu, Y.; Hamburg, S.P. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environ. Res. Lett. 2021, 16, 054042. [Google Scholar] [CrossRef]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- Global Methane Pledge. Available online: https://www.globalmethanepledge.org (accessed on 1 November 2023).
- Bamji, Z. Global Gas Flaring Tracker Report, March 2023; World Bank Publications: Washington, DC, USA, 2023. [Google Scholar]
- Corbin, D.; Johnson, M. Detailed Expressions and Methodologies for Measuring Flare Combustion Efficiency, Species Emission Rates, and Associated Uncertainties. Ind. Eng. Chem. Res. 2014, 53, 19359–19369. [Google Scholar] [CrossRef]
- Parameters for Properly Designed and Operated Flares. Report for Flare Review Panel, April 2012 U.S. EPA Office for Air Quality Planning and Standards (OAQPS). Available online: https://www3.epa.gov/airtoxics/flare/2012flaretechreport.pdf (accessed on 6 October 2023).
- Freeke, J.; Chong, T.; Newman, D.; Evans, P. Realtime methane quantification and reporting with upstream flaring. In Proceedings of the Global Flow Measurement Workshop, Tonsberg, Norway, 24–27 October 2023. [Google Scholar]
- Johnson, M.R.; Kostiuk, L.W. Efficiencies of low-momentum jet diffusion flames in crosswinds. Combust. Flame 2000, 123, 189–200. [Google Scholar] [CrossRef]
- Johnson, M.R.; Wilson, D.J.; Kostiuk, L.W. A Fuel Stripping Mechanism for Low-momentum Jet Diffusion Flames in a Crossflow. Combust. Sci. Technol. 2000, 169, 155–174. [Google Scholar] [CrossRef]
- EEMS Atmospheric Emission Calculations Issue 1.8; UK Offshore Operators Association Ltd.: Aberdeen, UK, 2008.
- McDaniel, M. Flare Efficiency Study; Environmental Protection Agency: Washington, DC, USA, 1983; EPA-600/2-83-052.
- Pohl, J.; Soelberg, N. Evaluation of the Efficiency of Industrial Flares: Flare Head Design and Gas Composition; EPA: Washington, DC, USA, 1985. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P1003QL1.PDF?Dockey=P1003QL1.PDF (accessed on 6 October 2023).
- Allen, D.; Torres, V. Flare Study Final Report. Texas Commission on Environmental Quality PGA No. 582-8-862-45-FY09-04Tracking No. 2008-81 with Supplemental Support from the Air Quality Research Program TCEQ Grant No. 582-10-94300 TCEQ 2010 Flare Study Final Report. Available online: http://www.d7036.com/home/downloads_server/2010-flare-study-final-report.pdf (accessed on 1 October 2023).
- Plant, G.; Kort, E.A.; Brandt, A.R.; Chen, Y.; Fordice, G.; Gorchov Negron, A.M.; Schwietzke, S.; Smith, M.; Zavala-Araiza, D. Inefficient and unlit natural gas flares both emit large quantities of methane. Science 2022, 377, 1566–1571. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.T.; Foulds, A.; Wilde, S.; Barker, P.; Squires, F.A.; Lee, J.; Purvis, R.; Burton, R.; Colfescu, I.; Mobbs, S.; et al. Flaring efficiencies and NOx emission ratios measured for offshore oil and gas facilities in the North Sea. Atmos. Chem. Phys. 2023, 23, 1491–1509. [Google Scholar] [CrossRef]
- OGMP Technical Guidance Document—Flare Efficiency. Available online: https://ogmpartnership.com/wp-content/uploads/2023/02/Flare-efficiency-TGD-Approved-by-SG.pdf (accessed on 6 October 2023).
- Few, J. Review of Differential Absorption Lidar Flare Emission and Performance Data; Chief Scientist’s Group report October 2019 Version: SC150026/R (HOEV151612 Task 1); Environment Agency: London, UK, 20 October 2019; ISBN 978-1-84911-434-9.
- Black, S. Metering and Emission Analysis of Flare and Vent Metering Systems Using Computational Fluid Dynamics. In Proceedings of the Global Flow Measurement Workshop, Aberdeen, UK, 20–21 October 2022. [Google Scholar]
- Zeng, Y.; Morris, J.; Dombrowski, M. Validation of a new method for measuring and continuously monitoring the efficiency of industrial flares. J. Air Waste Manag. Assoc. 2016, 66, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Chow, J.; Sui, L.; Wang, A.; Freeke, J.; Zhang, J.; Evans, P.; Newman, D.; Venuturumilli, R.; Lowe, J.; et al. Validation of a new method for continuous flare combustion efficiency monitoring. Atmosphere 2024. [Google Scholar]
- Peebles, B.; Stockton, P. Offshore flares: Measurement and calculation of combustion efficiency, methane and CO2e emissions. In Proceedings of the North Sea Flow Measurement Workshop, Aberdeen, UK, 20–21 October 2022; Available online: https://s3.eu-west-2.amazonaws.com/assets.accord-esl.com/2022-Offshore-Flares-Measurement-and-Calculation-of-Combustion-Efficiency-Methane-C02e-Emissions_NSFMW-2022_Accord-ESL.pdf (accessed on 6 October 2023).
- US EPA, 40 CFR Parts 60 and 63. Available online: https://www.govinfo.gov/content/pkg/FR-2018-11-26/pdf/2018-25080.pdf (accessed on 1 November 2023).
- ASME Standard MFC-3M-2004; Measurement of Fluid Flow in Pipes Using Orifice, Nozzle, and Venturi. ASME: New York, NY, USA, 2004.
- EPA Method 18—Measurement of Gaseous Organic Compound Emissions by Gas Chromatography. Available online: https://www.epa.gov/emc/method-18-volatile-organic-compounds-gas-chromatography (accessed on 13 November 2023).
- EPA Method 19—Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates. Available online: https://www.epa.gov/emc/method-19-sulfur-dioxide-removal-and-particulate-sulfur-dioxide-and-nitrogen-oxides-electric (accessed on 13 November 2023).
- EPA Method 10—Determination of Carbon Monoxide Emissions from Stationary Sources (Instrumental Analyzer Procedure). Available online: https://www.epa.gov/emc/method-10-carbon-monoxide-instrumental-analyzer (accessed on 13 November 2023).
- EPA Method 3A—Oxygen and Carbon Dioxide Concentrations–Instrumental. Available online: https://www.epa.gov/emc/method-3a-oxygen-and-carbon-dioxide-concentrations-instrumental (accessed on 13 November 2023).
- EPA Method 25A—Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer. Available online: https://www.epa.gov/emc/method-25a-gaseous-organic-concentration-flame-ionization (accessed on 13 November 2023).
- ISO/IEC Guide 98-3:2008; Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995). ISO: Geneva, Switzerland, 2008.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, P.; Newman, D.; Venuturumilli, R.; Liekens, J.; Lowe, J.; Tao, C.; Chow, J.; Wang, A.; Sui, L.; Bottino, G. Full-Size Experimental Measurement of Combustion and Destruction Efficiency in Upstream Flares and the Implications for Control of Methane Emissions from Oil and Gas Production. Atmosphere 2024, 15, 333. https://doi.org/10.3390/atmos15030333
Evans P, Newman D, Venuturumilli R, Liekens J, Lowe J, Tao C, Chow J, Wang A, Sui L, Bottino G. Full-Size Experimental Measurement of Combustion and Destruction Efficiency in Upstream Flares and the Implications for Control of Methane Emissions from Oil and Gas Production. Atmosphere. 2024; 15(3):333. https://doi.org/10.3390/atmos15030333
Chicago/Turabian StyleEvans, Peter, David Newman, Raj Venuturumilli, Johan Liekens, Jon Lowe, Chong Tao, Jon Chow, Anan Wang, Lei Sui, and Gerard Bottino. 2024. "Full-Size Experimental Measurement of Combustion and Destruction Efficiency in Upstream Flares and the Implications for Control of Methane Emissions from Oil and Gas Production" Atmosphere 15, no. 3: 333. https://doi.org/10.3390/atmos15030333
APA StyleEvans, P., Newman, D., Venuturumilli, R., Liekens, J., Lowe, J., Tao, C., Chow, J., Wang, A., Sui, L., & Bottino, G. (2024). Full-Size Experimental Measurement of Combustion and Destruction Efficiency in Upstream Flares and the Implications for Control of Methane Emissions from Oil and Gas Production. Atmosphere, 15(3), 333. https://doi.org/10.3390/atmos15030333