Analysis of Dual-Polarimetric Radar Observations of Precipitation Phase during Snowstorm Events in Jiangsu Province, China
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area and Radar Information
2.2. Data and Processing
2.3. Methods
2.3.1. Basic Parameters of Dual-Polarimetric Radar
2.3.2. Secondary Products of Dual-Polarimetric Radar
3. Results
3.1. Statistical Characteristics of Dual-Polarimetric Radar Data
3.1.1. Statistical Analysis of Parameters
3.1.2. Identification of the Melting Layer
3.2. Analysis of Typical Processes
3.2.1. Observations of Snowfall
3.2.2. Polarimetric Parameters Features
3.2.3. ML and HCL Products
- The particles detected by S-band radars in the air are not directly the precipitation particles that fall to the ground, so it is necessary to distinguish them from the properties of ground precipitation particles in real time to avoid interference.
- In significant or long-duration rain-to-snow transition processes, the HCL product can accurately identify the phase attributes of atmospheric particles, including dry snow above the melting layer, light rain below the melting layer, and wet snow and ice crystals within the melting layer. However, in cases where the rain-to-snow transition is not significant or the duration is short, due to the low height of the zero-degree layer, with the melting layer being mostly below 1 km, weak wet snow is only identified near the radar station, and the rest of the PPI shows a large area identified as dry snow.
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.F. Comparison study of two similar rain and snow processes in South China. Meteorol. Mon. 2007, 33, 68–75. [Google Scholar] [CrossRef]
- Liu, J.Y.; Gu, S.N.; Xu, D.F. Simulation study on precipitation phase state in two snowfall processes of south China. Plateau Meteorol. 2013, 32, 179–190. [Google Scholar] [CrossRef]
- Shi, H.R.; Li, F.W.; Wu, L.; Jin, L.J. Analysis on Observations of Precipitation Phase Changes Using Wind Profile Radar Data. Meteorol. Mon. 2014, 40, 1259–1265. [Google Scholar] [CrossRef]
- Zhang, C.Y. Analysis of Storm Snow Weather Process Based on Wind Profile Radar Data. Meteorol. Environ. Sci. 2016, 39, 80–85. [Google Scholar] [CrossRef]
- Zheng, L.N.; Li, T.; Sun, Q.; Tian, X.S. Analysis on transition of precipitation type and causes of two snowstorms over the middle and lower reaches of the Yellow River in February 2021. J. Mar. Meteorol. 2022, 42, 48–56. [Google Scholar] [CrossRef]
- Hu, L.; Liu, J.; Dong, G.H.; Yi, X.Y.; Yang, X.J.; Sun, M.N. Analysis on the Circulation Situation and Radar Characteristics of Snowstorm in Tianjin City. Meteorol. Environ. Sci. 2020, 43, 34–42. [Google Scholar] [CrossRef]
- Duan, Y.H.; Wang, W.; Tian, G.Z.; Zhang, N. Comparison of Two Rain to Heavy Snowstorm Weather Processes Under the Similar Weather Situation in Northern Part of North China. J. Arid Meteorol. 2013, 31, 784–789. [Google Scholar] [CrossRef]
- Lu, B.H.; Yang, Q.; Gao, S.Y.; Han, J.W.; Yan, Q.; Liang, H.; Su, H.; Liu, S. Doppler Radar Echo Features About Two Kinds of Snowstorm Weather Process. J. Arid Meteorol. 2016, 34, 836–840. [Google Scholar] [CrossRef]
- Pei, Y.J.; Wang, F.X.; Zhang, Y.X.; Wang, L.R. Analysis on Doppler Radar Feature of Snowstorm in Hebei in Late Autumn of 2009. Plateau Meteorol. 2012, 31, 1110–1118. [Google Scholar]
- Jiang, N.C.; Hu, W.; Shao, Y.; Zhou, S.X. Analysis of Characteristics of Precipitation Particle on Heavy Rain Snow Process in Dabie Mountain in Anhui Province. Meteorol. Mon. 2010, 36, 79–84. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Clark, K.A.; Kingsmill, D.E. A Polarimetric Radar Approach to Identify Rain, Melting-Layer, and Snow Regions for Applying Correction to Vertical Profiles of Reflectivity. J. Appl. Meteorol. Climatol. 2007, 46, 154–166. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V.; Reeves, H.D.; Schuur, T.J. A Dual-Polarization Radar Signature of Hydrometeor Refreezing in Winter Storms. J. Appl. Meteorol. Climatol. 2013, 52, 2549–2566. [Google Scholar] [CrossRef]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Chandrasekar, V. A Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation. J. Atmos. Ocean. Technol. 2014, 31, 1457–1481. [Google Scholar] [CrossRef]
- Kaltenboeck, R.; Ryzhkov, A. A freezing rain storm explored with a C-band polarimetric weather radar using the QVP methodology. Meteorol. Z. 2017, 26, 207–222. [Google Scholar] [CrossRef]
- Zrnic, D.S.; Ryzhkov, A.; Straka, J.; Liu, Y.D.; Vivekanandan, M.F. Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Ocean. Technol. 2001, 18, 892–913. [Google Scholar] [CrossRef]
- Tyynel, J.; Chandrasekar, V. Characterizing falling snow using multifrequency dual-polarization measurements. J. Geophys. Res. 2014, 119, 8268–8283. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zrnic, D.; Brandes, E.; Vivekanandan, J.; Huang, G. Characteristics of hydrometeor orientation obtained from radar polarimetric measurements in a linear polarization basis. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; pp. 702–704. [Google Scholar] [CrossRef]
- Liu, H.P.; Chandrasekar, V. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnic, D.S.; Ryzhkov, A.V. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteorol. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Sun, S.S.; Sun, Y.; Xu, T.T.; Wang, H.; Yang, C.F.; He, P.C. Multi-source observational characteristics of precipitation phase during extreme snowstorm Shandong on 7 November 2021. Meteorol. Mon. 2023, 49, 830–842. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.Q.; Wang, H.; Zhang, Q.C.; Gong, D.L.; Yang, X.B. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J. Appl. Meteorol. Sci. 2021, 32, 370–384. [Google Scholar] [CrossRef]
- Feng, L.; Xiao, H.; Sun, Y. A study on hydro meteor classification and application based on X-band dual-polarization radar measurements. Clim. Environ. Res. 2018, 23, 366–386. [Google Scholar] [CrossRef]
- Du, M.Y.; Liu, L.P.; Hu, Z.Q.; Yang, C. An analysis of dual-linear polarimetric Doppler radar data quality. Acta Meteorol. Sin. 2013, 71, 329–332. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, H.P. Non-precipitation identification technique on S-band WSR-88D polarization weather radar. Meteorol. Mon. 2018, 44, 665–675. [Google Scholar] [CrossRef]
- Rasmussen, R.M.; Dixon, M.; Vasiloff, S.; Hage, F.; Mei, X. Snow Nowcasting Using a Real-time Correlation of Radar Reflectivity with Snow Gauge Accumulation. J. Appl. Meteorol. 2003, 42, 20–36. [Google Scholar] [CrossRef]
- Rasmussen, R.M.; Hills, A.; Landolt, S.; Knight, C. Results of Holdover Time Testing of Type IV Anti-icing Fluids with the Improved NCAR Artificial Snow Generation System; Office of Aviation Research: Washing, DC, USA, 1999.
- Hiromu, S.; Teruyuki, K.; Kazuo, S.; Masanori, Y.; Kenichi, K.; Masayuki, M. Analytical and Numerical Studies of a Quasi-stationary Precipitation Band Observed over Kanto Area Associated with Typhoon 9426 (Orchid). J. Meteorol. Soc. Jpn. 1999, 77, 929–938. [Google Scholar] [CrossRef]
- Yoshimoto, N.; Fujiyoshi, Y.; Takeda, T.A. Dual-Doppler Radar Study of Longitudinal Mode Snow Bands. Part II: Influence of the Kinematics of a Longitudinal Mode Snow Band on the Development of adjacent Snow Band. J. Meteorol. Soc. Jpn. 2000, 78, 381–403. [Google Scholar] [CrossRef]
- Cram, T.; Montgomery, M.; Hertenstein, R.F. Early Evolution of Vertical Vorticity in a Numerically Simulated Idealized Convective Line. J. Atmos. Sci. 2002, 59, 2113–2127. [Google Scholar] [CrossRef]
- Toshi, H.; Yasumi, N. Riming Growth Process Contributing to the Formation of Snowfall in Orographic Areas of Japan Facing the Japan Sea. J. Meteorol. Soc. Jpn. 1999, 77, 101–115. [Google Scholar] [CrossRef]
- Eito, H.; Kato, T.; Yoshizaki, M.; Adachi, A. Numerical Simulation of the Quasi-stationary Snow Band Observed over the Southern Coastal Area of the Sea of Japan on 16 January 2001. J. Meteorol. Soc. Jpn. 2005, 83, 551–576. [Google Scholar] [CrossRef]
- Andric, J.; Kumjian, M.R.; Zrnic, D.S.; Straka, J.M.; Melnikov, V.M. Polarimetric Signatures Above the Melting Layer in Winter Storms: An Observational and Modeling Study. J. Appl. Meteorol. Climatol. 2013, 52, 682–700. [Google Scholar] [CrossRef]
- Shen, F.; Min, J.; Xu, D. Assimilation of radar radial velocity data with the WRF Hybrid ETKF–3DVAR system for the prediction of Hurricane Ike (2008). Atmos. Res. 2016, 169, 127–138. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Min, J.; Chu, Z.; Li, X. Assimilation of radar radial velocity data with the WRF Hybrid 4DEnVar system for the prediction of Hurricane Ike (2008). Atmos. Res. 2020, 230, 104622. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Li, H.; Liu, R. Impact of radar data assimilation on a squall line over the Yangtze-Huaihe River Basin with a radar reflectivity operator accounting for ice-phase hydrometeors. Meteorol. Appl. 2021, 28, e1967. [Google Scholar] [CrossRef]
- Song, L.; Shen, F.; Shao, C.; Shu, A.; Zhu, L. Impacts of 3DEnVar-Based FY-3D MWHS-2 Radiance Assimilation on Numerical Simulations of Landfalling Typhoon Ampil (2018). Remote Sens. 2022, 14, 6037. [Google Scholar] [CrossRef]
- Shu, A.; Shen, F.; Jiang, L.; Zhang, T.; Xu, D. Assimilation of Clear-sky FY-4A AGRI radiances within the WRFDA system for the prediction of a landfalling Typhoon Hagupit (2020). Atmos. Res. 2022, 283, 106556. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Fan, S.; Chen, M.; Shen, F. Assimilating all-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China. Adv. Atmos. Sci. 2021, 38, 661–676. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D.; Li, X.; Shen, F. Nonlinear Bias Correction of the FY-4A AGRI Infrared Radiance Data Based on the Random Forest. Remote Sens. 2023, 15, 1809. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Liu, Z.; Shen, F. All-sky infrared radiance data assimilation of FY-4A AGRI with different physical parameterizations for the prediction of an extremely heavy rainfall event. Atmos. Res. 2023, 293, 106898. [Google Scholar] [CrossRef]
- Shen, F.; Song, L.; Li, H.; He, Z.; Xu, D. Effects of different momentum control variables in radar data assimilation on the analysis and forecast of strong convective systems under the background of northeast cold vortex. Atmos. Res. 2022, 280, 106415. [Google Scholar] [CrossRef]
- Shen, F.; Song, L.; He, Z.; Xu, D.; Chen, J.; Huang, L. Impacts of adding hydrometeor control variables on the radar reflectivity data assimilation for the 6–8 August 2018 mesoscale convective system case. Atmos. Res. 2023, 295, 107012. [Google Scholar] [CrossRef]
- Song, T.; Xu, D.; Shen, F.; Shu, A.; Song, L. Forecast and Analysis of a Rainstorm Case in East China Based on the Blown-Up Theory. Atmosphere 2023, 14, 1508. [Google Scholar] [CrossRef]
- Wu, J.Y.; Bi, Y.H.; Sun, Q.; Lü, D.R. Observation and analysis of snowband structure in a process of cyclone frontal snowfall in Beijing with Ka-band and X-band polarized radars. Chin. J. Atmos. Sci. 2021, 45, 931–942. [Google Scholar] [CrossRef]
- Liao, X.N.; Zhang, L.N.; He, N.; Lu, B. Analysis on the Mechanism of the 17 March 2012 Precipitation Type Variety in Beijing. Meteorol. Mon. 2013, 39, 28–38. [Google Scholar] [CrossRef]
- He, C.F.; Huang, X.X.; Lu, J.J. Comprehensive Analysis on Snow and Freezing-rain Events based on Doppler Weather Radar in Ningbo. J. Appl. Meteorol. Sci. 2009, 20, 767–771. [Google Scholar] [CrossRef]
- Wei, W.; Liu, L.P.; Wu, C.; Wang, H.Y.; Zhou, M. Analysis of dual-polarization radar observation during the 5 December 2015 snowfall process in Hangahou. Meteorol. Mon. 2019, 45, 1248–1261. [Google Scholar] [CrossRef]
- Yong, J.; Wei, M. Vertical characteristic analysis of cloud phase of dual-polarization radar with snowfall echo. Sci. Technol. Eng. 2019, 19, 46–53. [Google Scholar]
- Wu, Y.; Zhao, F.; Kong, Z.L.; Peng, X.Y.; Wang, Y.H.; Ma, H. Feature analysis of the first snowfall in Zhejiang in 2015 by dual-polarization. J. Nanjing Univ. Inf. Sci. Technol. 2018, 10, 103–109. [Google Scholar] [CrossRef]
- Tao, R.T. Snow Microphysical Characteristics and Snowfall Estimation in East China Based on a 2D Video Dendrometer and Dual Polarization Radar; Nanjing University: Nanjing, China, 2020. [Google Scholar]
- Bechini, R.; Baldini, L.; Chandrasekar, V. Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteorol. Climatol. 2013, 52, 1147–1169. [Google Scholar] [CrossRef]
- Kennedy, P.C.; Rutledge, S.A. S-band dual-polarization radar observations of winter storms. J. Appl. Meteorol. Climatol. 2011, 50, 844–858. [Google Scholar] [CrossRef]
- Yang, Z.X.; Xie, Y.F.; Xiang, Y.; Zhou, S.N. Analysis on dual polarization radar observations of a heavy snowstorm event in Anhui in the beginning of January 2018. Torr. Rain Dis. 2019, 38, 31–40. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Seliga, T.A.; Bringi, V.N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol. Climatol. 1976, 15, 69–76. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasckar, V.; Balakrishnan, N.; Zrnić, D.S. An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Ocean. Technol. 1990, 7, 829–840. [Google Scholar] [CrossRef]
- Sachidananda, M.; Zrnić, D.S. ZDR measurement considerations for a fast scan capability radar. Radio Sci. 1985, 20, 907–922. [Google Scholar] [CrossRef]
- Jameson, A.R.; Mueller, E.A. Estimation of propagation-differential phase shift from sequential orthogonal linear polarization radar measurements. J. Atmos. Ocean. Technol. 1985, 2, 133–137. [Google Scholar] [CrossRef]
- Testud, J.; Le Bouar, E.; Obligis, E.; Mustapha, A.-M. The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Ocean. Technol. 2000, 17, 332–356. [Google Scholar] [CrossRef]
- Jing, G.F.; Luo, L.; Xiao, H.; Guo, J.; Cui, X.L. Application research of dual-polarization radar in quality control of automatic rain gauge. Meteorol. Mon. 2020, 46, 1189–1198. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, K.; Zhang, G.; Glangrande, S.E. A hybrid method to estimate specific differential phase and rainfall with linear programming and physics constraints. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1–16. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Principles and Applications of Polarized Doppler Weather Radar; Beijing Meteorological Publishing House: Beijing, China, 2010. [Google Scholar]
- Zhang, C.A. User Guide for Dual Polarization Weather Radar Products; Beijing Minshida Radar Co., Ltd.: Beijing, China, 2018. [Google Scholar]
- Brandes, E.A.; Ikeda, K. Freezing-level estimation with polarimetric radar. J. Appl. Meteorol. 2004, 43, 1541–1553. [Google Scholar] [CrossRef]
- Shusse, Y.; Maesaka, T.; Kieda, K.; Iwanami, K. Polarimetric radar observation of the melting layer in a winter precipitation system associated with a south-coast cyclone in Japan. J. Meteorol. Soc. Jpn. 2019, 97, 375–385. [Google Scholar] [CrossRef]
Process Number | Process Date | Process Time (LST) | Affected Areas |
---|---|---|---|
1 | 28 March 2020 | 02–08 | Regions along the Yangtze River and southern Jiangsu Province |
2 | 13 December 2020 | 19–23 | Regions along the Yangtze River and southern Jiangsu Province |
3 | 29 December 2020 (a) | 06–07 | The Huaibei region |
4 | 29 December 2020 (b) | 09–10 | The Jianghuai region |
5 | 29 December 2020 (c) | 13–14 | Regions along the Yangtze River |
6 | 29 December 2020 (d) | 17–20 | Southern Jiangsu Province |
7 | 28 January 2022 | 16–23 | Regions along the Yangtze River and southern Jiangsu Province |
8 | 7 February 2022 | 02–20 | Regions along the Yangtze River and southern Jiangsu Province |
Type | ZH (dBZ) | CC | ZDR (dB) | KDP (°·km−1) |
---|---|---|---|---|
L/M Rain | 5~50 | 0.97~1.01 | 0.0~6.0 | 0.0~1.0 |
Heavy Rain | 40~60 | 0.95~1.00 | 0.5~8.0 | 1.0~5.0 |
Big Drops | 10~50 | 0.92~1.01 | 2.5~7.0 | 0.0~2.0 |
Hail | 45~80 | 0.75~1.0 | −0.3~4.5 | −2.0~10 |
Ice Crystals | 30~55 | 0.92~1.01 | −0.3~2.2 | −2.0~2.0 |
Dry Snow | 25~50 | 0.88~0.985 | 0.5~3.0 | −1.0~0.5 |
Wet Snow | 0~25 | 0.95~1.01 | −1.0~5.0 | −1.0~0.5 |
Process Date | Melting Layer Heights Obtained from ZH (km) | Melting Layer Heights Obtained from ZDR (km) | Melting Layer Heights Obtained from CC (km) | Actual Zero-Degree Layer Height (km) |
---|---|---|---|---|
28 March 2020 | 3.0 | 3.4 | 3.2 | 2.13 |
13 December 2020 | 0.9 | 0.6 | 0.7 | 0.70 |
29 December 2020 (a) | 1.3 | 1.3 | 1.2 | 1.43 |
29 December 2020 (b) | 1.7 | 1.8 | 1.7 | 1.726 * |
29 December 2020 (c) | 2.8 | 2.8 | 2.7 | 2.86 |
29 December 2020 (d) | 2.2~2.4 | 2.3~2.4 | 2.2~2.5 | 2.18 |
28 January 2022 | 0.4 | 0.4 | 0.4 | 0.43 |
7 February 2022 | / | / | / | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, Y.; Liu, M.; Chen, W.; Li, C. Analysis of Dual-Polarimetric Radar Observations of Precipitation Phase during Snowstorm Events in Jiangsu Province, China. Atmosphere 2024, 15, 321. https://doi.org/10.3390/atmos15030321
Wang L, Wang Y, Liu M, Chen W, Li C. Analysis of Dual-Polarimetric Radar Observations of Precipitation Phase during Snowstorm Events in Jiangsu Province, China. Atmosphere. 2024; 15(3):321. https://doi.org/10.3390/atmos15030321
Chicago/Turabian StyleWang, Lei, Yi Wang, Mei Liu, Wei Chen, and Chiqin Li. 2024. "Analysis of Dual-Polarimetric Radar Observations of Precipitation Phase during Snowstorm Events in Jiangsu Province, China" Atmosphere 15, no. 3: 321. https://doi.org/10.3390/atmos15030321
APA StyleWang, L., Wang, Y., Liu, M., Chen, W., & Li, C. (2024). Analysis of Dual-Polarimetric Radar Observations of Precipitation Phase during Snowstorm Events in Jiangsu Province, China. Atmosphere, 15(3), 321. https://doi.org/10.3390/atmos15030321