A Novel Approach to Assessing Light Extinction with Decade-Long Observations of Chemical and Optical Properties in Seoul, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Period
2.2. Chemical Analysis
2.3. Optical Analysis
2.4. Light Extinction Metrics
3. Results and Discussion
3.1. Aerosol Mass Concentrations and Chemical Composition of PM2.5
3.2. Aerosols and Measured Extinction Coefficients
3.3. Assessment of Light Extinction Algorithms
3.4. A Modified Yu Scheme
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horvath, H. Atmospheric visibility. Atmos. Environ. 1981, 15, 1785–1796. [Google Scholar] [CrossRef]
- Watson, J.G. Visibility: Science and regulation. J. Air Waste Manag. Assoc. 2002, 52, 628–713. [Google Scholar] [CrossRef]
- Malm, W.C.; Sisler, J.F.; Huffman, D.; Eldred, R.A.; Cahill, T.A. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res.-Atmos. 1994, 99, 1347–1370. [Google Scholar] [CrossRef]
- Pitchford, M.; Malm, W.; Schichtel, B.; Kumar, N.; Lowenthal, D.; Hand, J. Revised Algorithm for Estimating Light Extinction from IMPROVE Particle Speciation Data. J. Air Waste Manag. Assoc. 2007, 57, 1326–1336. [Google Scholar] [CrossRef]
- Bai, D.; Wang, H.; Tan, Y.; Yin, Y.; Wu, Z.; Guo, S.; Shen, L.; Zhu, B.; Wang, J.; Kong, X. Optical Properties of Aerosols and Chemical Composition Apportionment under Different Pollution Levels in Wuhan during January 2018. Atmosphere 2019, 11, 17. [Google Scholar] [CrossRef]
- Park, S.M.; Song, I.H.; Park, J.S.; Oh, J.; Moon, K.J.; Shin, H.J.; Ahn, J.Y.; Lee, M.D.; Kim, J.; Lee, G. Variation of PM2.5 chemical compositions and their contributions to light extinction in Seoul. Aerosol Air Qual. Res. 2018, 18, 2220–2229. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jo, W.K.; Chun, H.H. Long-term trends in visibility and its relationship with mortality, air-quality index, and meteorological factors in selected areas of Korea. Aerosol Air Qual. Res. 2015, 15, 673–681. [Google Scholar] [CrossRef]
- Cao, J.J.; Wang, Q.Y.; Chow, J.C.; Watson, J.G.; Tie, X.X.; Shen, Z.X.; Wang, P.; An, Z.S. Impacts of aerosol compositions on visibility impairment in Xi’an, China. Atmos. Environ. 2012, 59, 559–566. [Google Scholar] [CrossRef]
- Luan, T.; Guo, X.; Guo, L.; Zhang, T. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing. Atmos. Chem. Phys. 2018, 18, 203–225. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Li, R.; Hu, Y.J.; Li, L.; Fu, H.B.; Chen, J.M. Real-time aerosol optical properties, morphology and mixing states under clear, haze and fog episodes in the summer of urban Beijing. Atmos. Chem. Phys. 2017, 17, 5079–5093. [Google Scholar] [CrossRef]
- Vecchi, R.; Bernardoni, V.; Valentini, S.; Piazzalunga, A.; Fermo, P.; Valli, G. Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM1 composition and sources. Environ. Pollut. 2018, 233, 679–689. [Google Scholar] [CrossRef]
- Yu, X.; Shen, L.; Xiao, S.; Ma, J.; Lü, R.; Zhu, B.; Hu, J.; Chen, K.; Zhu, J. Chemical and Optical Properties of Atmospheric Aerosols during the Polluted Periods in a Megacity in the Yangtze River Delta, China. Aerosol Air Qual. Res. 2019, 19, 103–117. [Google Scholar] [CrossRef]
- Wu, X.; Xina, J.; Zhang, X.; Klaus, S.; Wang, Y.; Wang, L.; Wen, T.; Liu, Z.; Si, R.; Liu, G.; et al. A new approach of the normalization relationship between PM2.5 and visibility and the theoretical threshold, a case in north China. Atmos. Res. 2020, 245, 105054. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.; Wu, Y.; Zhang, Z. Evaluation of the IMPROVE formulas based on Mie model in the calculation of particle scattering coefficient in an urban atmosphere. Atmos. Environ. 2020, 222, 117116. [Google Scholar] [CrossRef]
- Gao, L.; Yan, P.; Mao, J.; Zhang, X.; Zhang, X.; Wu, Y.; Jing, J.; Xu, J.; Deng, X.; Chi, W. Ambient Atmospheric Aerosol Extinction Coefficient Reconstruction from PM2.5 Mass Concentrations and Application to Haze Identification in China. Aerosol Air Qual. Res. 2021, 21, 200386. [Google Scholar] [CrossRef]
- Prennia, A.J.; Hand, J.L.; Malm, W.C.; Copeland, S.; Luo, G.; Yu, F.; Taylor, N.; Russell, L.M.; Schichtel, B.A. An examination of the algorithm for estimating light extinction from IMPROVE particle speciation data. Atmos. Environ. 2019, 214, 116880. [Google Scholar] [CrossRef]
- Izhar, S.; Gupta, T.; Qadri, A.M.; Panday, A.K. Wintertime chemical characteristics of aerosol and their role in light extinction during clear and polluted days in rural Indo Gangetic plain. Environ. Pollut. 2021, 282, 117034. [Google Scholar] [CrossRef]
- Guo, L.; Cui, Y.; He, Q.; Gao, W.; Pei, K.; Zhu, L.; Li, H.; Wang, X. Contributions of aerosol chemical composition and sources to light extinction during haze and non-haze days in Taiyuan, China. Atmos. Pollut. Res. 2021, 12, 101140. [Google Scholar] [CrossRef]
- Lan, Z.; Zhang, B.; Huang, X.; Zhu, Q.; Yuan, J.; Zeng, L.; Hu, M.; He, L. Source apportionment of PM2.5 light extinction in an urban atmosphere in China. J. Environ. Sci. 2018, 63, 277–284. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, G.; Tan, T.; Li, C.; Zong, T.; Xu, N.; Zhu, W. Current challenges of improving visibility due to increasing nitrate fraction in PM2.5 during the haze days in Beijing, China. Environ. Pollut. 2021, 290, 118032. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lee, H.W.; Lee, Y.S. Attenuation of the Atmospheric Aerosol Transmissivity due to Air Pollution. J. KAPRA 1995, 11, 23–29, (In Korean with English Abstract). [Google Scholar]
- Kim, K.W.; Kim, Y.J.; Oh, S.J. Visibility Impairment during Yellow Sand Periods in the Urban Atmosphere of Kwangju, Korea. Atmos. Environ. 2001, 35, 5157–5167. [Google Scholar] [CrossRef]
- Valentini, S.; Bernardoni, V.; Massabo, D.; Prati, P.; Valli, G.; Vecchi, R. Tailored coefficients in the algorithm to assess reconstructed light extinction at urban sites: A comparison with the IMPROVE revised approach. Atmos. Environ. 2018, 172, 168–176. [Google Scholar] [CrossRef]
- Liao, K.; Wang, Q.; Wang, S.; Yu, J.Z. Bayesian Inference Approach to Quantify Primary and Secondary Organic Carbon in Fine Particulate Matter Using Major Species Measurements. Environ. Sci. Technol. 2023, 57, 5169–5179. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, J.R.A. Fisher on Bayes and Bayes Theorem. Baysian Anal. 2008, 3, 161–170. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, S.; Lou, S.; Wang, H.; Yu, Y.; Xu, W.; Liu, Y.; Cheng, Z.; Huang, X.; He, L.; et al. A novel algorithm to determine the scattering coefficient of ambient organic aerosols. Environ. Pollut. 2021, 270, 116209. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F.; Zhang, D.; Xu, L.; Liu, R.; Teng, X.; Zhang, X.; Wang, S.; Li, W. Variations of air pollutant response to COVID-19 lockdown in cities of the Tibetan Plateau. Environ. Sci. Atmos. 2023, 3, 708. [Google Scholar] [CrossRef]
- Song, I.H.; Park, J.S.; Park, S.M.; Kim, D.G.; Kim, Y.W.; Shin, H.J. Seasonal characteristics of PM1 in Seoul, Korea, measured using HR-ToF-Aerosol Mass Spectrometer in 2018. Atmos. Environ. 2021, 266, 118717. [Google Scholar] [CrossRef]
- Chen, X.; Ye, C.; Wang, Y.; Wu, Z.; Zhu, T.; Zhang, F.; Ding, X.; Shi, Z.; Zheng, Z.; Li, W. Quantifying evolution of soot mixing state from transboundary transport of biomass burning emissions. iScience 2023, 26, 108125. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, T.; Mordovskoi, P.; Kanaya, Y. Evaluation of black carbon mass concentrations using a miniaturized aethalometer: Intercomparison with a continuous soot monitoring system (COSMOS) and a single-particle soot photometer (SP2). Aerosol Sci. Technol. 2020, 54, 811–825. [Google Scholar] [CrossRef]
- Abichou, G.; Ngagine, S.H.; Ba, T.N.; Wang, G.; Flament, P.; Deboudt, K.; Dusanter, S.; Sigrist, M.W.; Tomas, A.; Chen, W. A New Photoacoustic Soot Spectrophone for Filter-Free Measurements of Black Carbon at 880 nm. Molecules 2022, 27, 6065. [Google Scholar] [CrossRef] [PubMed]
Bext | Reference |
---|---|
2.2fS (RH)[SS] + 4.8fL (RH)[LS] + 2.4fS (RH)[SN] + 5.1fL (RH)[LN] + 2.8[SOM] + 6.1[LOM] + [FS] + 1.7fSS (RH)[SSa] + 0.6[CMa] + 10[EC] | Pitchford et al. [4] |
2.2fS (RH)[SS] + 4.8fL (RH)[LS] + 2.4fS (RH)[SN] + 5.1fL (RH)[LN] + 8.4[SOM] + 9.6[LOM] + [FS] + 1.7fSS (RH)[SS] + 0.6[CMa] + 21[EC] | Park et al. [6] |
4.4f1 (RH)[AM-SUL] + 5.2f2 (RH)[AM-NIT] + 6.1f3 (RH)[OM] + 3.2[FS] + 0.6[CMa] + 6.74[EC] | Valentini et al. [24] |
9.7f (RH)[AM-SUL] + 5.2f (RH)[ AM-NIT] + 6.5[OM] + 5.5[Others] + 0.6[CMa] + 10[EC] | Hu et al. [21] |
3f (RH)[AM-SUL] + 3f (RH)[AM-NIT] + 4[OM] + 10[EC] | Yu et al. [13] |
Year | Recovery Rate (%) | Pitchford et al. [4] | Park et al. [6] | Valentini et al. [24] | Hu et al. [21] | Yu et al. [13] | This study | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope | R2 | Slope | R2 | Slope | R2 | Slope | R2 | Slope | R2 | Slope | R2 | ||
2011 | 47.1 | 0.92 | 0.69 | 1.03 | 0.73 | 0.72 | 0.67 | 0.56 | 0.67 | 1.22 | 0.72 | 1.14 | 0.74 |
2012 | 62.7 | 0.88 | 0.76 | 1.03 | 0.82 | 0.78 | 0.76 | 0.57 | 0.79 | 1.20 | 0.77 | 1.14 | 0.83 |
2013 | 44.6 | 0.72 | 0.83 | 0.90 | 0.90 | 0.66 | 0.82 | 0.49 | 0.85 | 1.07 | 0.86 | 1.00 | 0.91 |
2014 | 24.8 | 0.76 | 0.87 | 0.95 | 0.93 | 0.58 | 0.86 | 0.51 | 0.90 | 1.08 | 0.89 | 0.98 | 0.96 |
2015 | 8.3 | 1.17 | 0.74 | 1.31 | 0.80 | 0.89 | 0.74 | 0.69 | 0.79 | 1.24 | 0.71 | 1.58 | 0.85 |
2016 | 50.0 | 0.73 | 0.82 | 1.01 | 0.88 | 0.64 | 0.78 | 0.55 | 0.80 | 1.11 | 0.81 | 0.97 | 0.89 |
2017 | 38.0 | 0.61 | 0.77 | 0.85 | 0.89 | 0.46 | 0.75 | 0.46 | 0.80 | 0.82 | 0.79 | 0.93 | 0.96 |
2018 | 66.9 | 0.56 | 0.78 | 0.84 | 0.85 | 0.50 | 0.76 | 0.56 | 0.80 | 0.90 | 0.80 | 0.80 | 0.88 |
2019 | 75.1 | 0.79 | 0.86 | 0.95 | 0.88 | 0.62 | 0.85 | 0.69 | 0.87 | 1.10 | 0.87 | 0.97 | 0.93 |
2020 | 70.8 | 0.95 | 0.81 | 1.22 | 0.91 | 0.73 | 0.79 | 0.78 | 0.83 | 1.25 | 0.84 | 1.37 | 0.96 |
Average | 0.77 | 0.78 | 0.71 | 0.81 | 0.64 | 0.74 | 0.53 | 0.79 | 1.07 | 0.80 | 1.02 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-M.; Park, J.S.; Song, I.-H.; Kim, J.; Kim, H.W.; Lee, J.; Park, J.M.; Kim, J.-h.; Choi, Y.; Shin, H.J.; et al. A Novel Approach to Assessing Light Extinction with Decade-Long Observations of Chemical and Optical Properties in Seoul, South Korea. Atmosphere 2024, 15, 320. https://doi.org/10.3390/atmos15030320
Park S-M, Park JS, Song I-H, Kim J, Kim HW, Lee J, Park JM, Kim J-h, Choi Y, Shin HJ, et al. A Novel Approach to Assessing Light Extinction with Decade-Long Observations of Chemical and Optical Properties in Seoul, South Korea. Atmosphere. 2024; 15(3):320. https://doi.org/10.3390/atmos15030320
Chicago/Turabian StylePark, Seung-Myung, Jong Sung Park, In-Ho Song, Jeonghwan Kim, Hyun Woong Kim, Jaeyun Lee, Jung Min Park, Jeong-ho Kim, Yongjoo Choi, Hye Jung Shin, and et al. 2024. "A Novel Approach to Assessing Light Extinction with Decade-Long Observations of Chemical and Optical Properties in Seoul, South Korea" Atmosphere 15, no. 3: 320. https://doi.org/10.3390/atmos15030320
APA StylePark, S. -M., Park, J. S., Song, I. -H., Kim, J., Kim, H. W., Lee, J., Park, J. M., Kim, J. -h., Choi, Y., Shin, H. J., Ahn, J. Y., Jang, Y. W., Lee, T., & Lee, G. (2024). A Novel Approach to Assessing Light Extinction with Decade-Long Observations of Chemical and Optical Properties in Seoul, South Korea. Atmosphere, 15(3), 320. https://doi.org/10.3390/atmos15030320