Hydroclimate Changes Based on Testate Amoebae in the Greater Khingan Mountains’ Peatland (NE China) during the Last Millennium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Chronology
2.3. Testate Amoebae Analysis
2.4. Statistical Method
3. Results
3.1. Testate Amoebae Assemblages in the HT Profile
3.1.1. Zone 1 (Depth Range 60–44 cm): 650–450 cal yr BP
3.1.2. Zone 2 (Depth Range 43–25 cm): 400–250 cal yr BP
3.1.3. Zone 3 (Depth Range 24–12 cm): 200–50 cal yr BP
3.1.4. Zone 4 (Above 11 cm): 0–−50 cal yr BP
3.2. PCA Analysis
4. Discussion
4.1. TA Community Evolution Process of the HT Profile
4.2. The Implication of PCA Scores in the HT Peatland
4.3. Possible Forcing Mechanisms of Climate at the HT Peatland
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- An, Z.; Colman, S.M.; Zhou, W.; Li, X.; Brown, E.T.; Jull, A.J.; Cai, Y.; Huang, Y.; Lu, X.; Chang, H.; et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep. 2012, 2, 619. [Google Scholar] [CrossRef]
- Ji, J.; Shen, J.; Balsam, W.; Chen, J.; Liu, L.; Liu, X. Asian monsoon oscillations in the northeastern Qinghai–Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet. Sci. Lett. 2005, 233, 61–70. [Google Scholar] [CrossRef]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Wen, R.; Xiao, J.; Chang, Z.; Zhai, D.; Xu, Q.; Li, Y.; Itoh, S. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas 2010, 39, 262–272. [Google Scholar] [CrossRef]
- Charman, D.J.; Hohl, V.; Blundell, A.; Mitchell, F.; Newberry, J.; Oksanen, P. A 1000-year reconstruction of summer precipitation from Ireland: Calibration of a peat-based palaeoclimate record. Quat. Int. 2012, 268, 87–97. [Google Scholar] [CrossRef]
- Jones, P.D.; Briffa, K.R.; Osborn, T.J.; Lough, J.M.; van Ommen, T.D.; Vinther, B.M.; Luterbacher, J.; Wahl, E.R.; Zwiers, F.W.; Mann, M.E.; et al. High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene 2009, 19, 3–49. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.; Zhu, F.; Li, X. Climate change may cause distribution area loss for tree species in southern China. For. Ecol. Manag. 2022, 511, 120134. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Deng, X.; Chen, C. Quantitative analysis the influences of climate change and human activities on hydrological processes in Poyang Basin. J. Lake Sci. 2016, 28, 432–443. [Google Scholar]
- Dang, Y.; He, H.; Zhao, D.; Sunde, M.; Du, H. Quantifying the Relative Importance of Climate Change and Human Activities on Selected Wetland Ecosystems in China. Sustainability 2020, 12, 912. [Google Scholar] [CrossRef]
- Li, W.; Zhao, S.; Chen, Y.; Wang, Q.; Ai, W. State of China’s Climate in 2020. Atmos. Ocean. Sci. Lett. 2021, 14, 100048. [Google Scholar] [CrossRef]
- Choi, G.; Collins, D.; Ren, G.; Trewin, B.; Baldi, M.; Fukuda, Y.; Afzaal, M.; Pianmana, T.; Gomboluudev, P.; Huong, P.T.T.; et al. Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol. 2009, 29, 1906–1925. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, Y.; Edwards, R.L.; Cheng, H.; Liu, D.; Kong, X. A high-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years. Quat. Sci. Rev. 2015, 122, 250–257. [Google Scholar] [CrossRef]
- Han, D.; Gao, C.; Yu, Z.; Yu, X.; Li, Y.; Cong, J.; Wang, G. Late Holocene vegetation and climate changes in the Great Hinggan Mountains, northeast China. Quat. Int. 2019, 532, 138–145. [Google Scholar] [CrossRef]
- Xiao, J.; Fan, J.; Zhai, D.; Wen, R.; Qin, X. Testing the model for linking grain-size component to lake level status of modern clastic lakes. Quat. Int. 2015, 355, 34–43. [Google Scholar] [CrossRef]
- Bysouth, D.; Finkelstein, S.A. Linking testate amoeba assemblages to paleohydrology and ecosystem function in Holocene peat records from the Hudson Bay Lowlands, Ontario, Canada. Holocene 2020, 31, 457–468. [Google Scholar] [CrossRef]
- Łuców, D.; Küttim, M.; Słowiński, M.; Kołaczek, P.; Karpińska-Kołaczek, M.; Küttim, L.; Salme, M.; Lamentowicz, M. Searching for an ecological baseline: Long-term ecology of a post-extraction restored bog in Northern Estonia. Quat. Int. 2021, 607, 65–78. [Google Scholar] [CrossRef]
- Mikhailova, A.B.; Grenaderova, A.V.; Kurina, I.V.; Shumilovskikh, L.S.; Stojko, T.G. Holocene vegetation and hydroclimate changes in the Kansk forest steppe, Yenisei River Basin, East Siberia. Boreas 2021, 50, 948–966. [Google Scholar] [CrossRef]
- Ndayishimiye, J.C.; Lin, T.; Nyirabuhoro, P.; Zhang, G.; Zhang, W.; Mazei, Y.; Ganjidoust, H.; Yang, J. Decade-scale change in testate amoebae community primarily driven by anthropogenic disturbance than natural change in a large subtropical reservoir. Sci. Total Environ. 2021, 784, 147026. [Google Scholar] [CrossRef]
- Nova, C.C.; Rocha, A.M.; Branco, C.W.C.; Bozelli, R.L. New insights on the relation between zooplankton and humic substances in tropical freshwater ecosystems. An. Acad. Bras. Ciências 2021, 93, e20190409. [Google Scholar] [CrossRef] [PubMed]
- Charman, D.J. Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quat. Sci. Rev. 2001, 20, 1753–1764. [Google Scholar] [CrossRef]
- Mitchell, E.A.D.; Charman, D.J.; Warner, B.G. Testate amoebae analysis in ecological and paleoecological studies of wetlands: Past, present and future. Biodivers. Conserv. 2007, 17, 2115–2137. [Google Scholar] [CrossRef]
- Booth, R.K. Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: Modern ecology and hydrological calibration. J. Paleolimnol. 2002, 28, 329–348. [Google Scholar] [CrossRef]
- Qin, Y.; Xie, S.; Smith, H.G.; Swindles, G.T.; Gu, Y. Diversity, distribution and biogeography of testate amoebae in China: Implications for ecological studies in Asia. Eur. J. Protistol. 2011, 47, 1–9. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, L.; Swindles, G.T.; Yang, H.; Gu, Y.; Qi, S. A ~40-year paleoenvironmental record from the Swan Oxbow, Yangtze River, China, inferred from testate amoebae and sedimentary pigments. J. Paleolimnol. 2021, 66, 29–40. [Google Scholar] [CrossRef]
- Swindles, G.T.; Morris, P.J.; Mullan, D.J.; Payne, R.J.; Roland, T.P.; Amesbury, M.J.; Lamentowicz, M.; Turner, T.E.; Gallego-Sala, A.; Sim, T.; et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 2019, 12, 922–928. [Google Scholar] [CrossRef]
- Booth, R.K.; Lamentowicz, M.; Charman, D.J. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires. Peat. 2010, 7, 1–7. [Google Scholar]
- Mazei, Y.A.; Tsyganov, A.N.; Esaulov, A.S.; Tychkov, A.Y.; Payne, R.J. What is the optimum sample size for the study of peatland testate amoeba assemblages? Eur. J. Protistol. 2017, 61, 85–91. [Google Scholar] [CrossRef]
- Marcisz, K.; Jassey, V.E.J.; Kosakyan, A.; Krashevska, V.; Lahr, D.J.G.; Lara, E.; Lamentowicz, Ł.; Lamentowicz, M.; Macumber, A.; Mazei, Y.; et al. Testate Amoeba Functional Traits and Their Use in Paleoecology. Front. Ecol. Evol. 2020, 8, 575966. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Zhao, H.; Wang, M. A testate amoebae transfer function from Sphagnum-dominated peatlands in the Lesser Khingan Mountains, NE China. J. Paleolimnol. 2015, 54, 189–203. [Google Scholar] [CrossRef]
- Stastney, P.; Black, S. Bog Microtopography and the Climatic Sensitivity of Testate Amoeba Communities: Implications for Transfer Function-Based Paleo-Water Table Reconstructions. Microb. Ecol. 2020, 80, 309–321. [Google Scholar] [CrossRef]
- Payne, R.J.; Telford, R.J.; Blackford, J.J.; Blundell, A.; Booth, R.K.; Charman, D.J.; Lamentowicz, Ł.; Lamentowicz, M.; Mitchell, E.A.D.; Potts, G.; et al. Testing peatland testate amoeba transfer functions: Appropriate methods for clustered training-sets. Holocene 2011, 22, 819–825. [Google Scholar] [CrossRef]
- Turner, T.E.; Swindles, G.T.; Charman, D.J.; Blundell, A. Comparing regional and supra-regional transfer functions for palaeohydrological reconstruction from Holocene peatlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 369, 395–408. [Google Scholar] [CrossRef]
- Chen, J.; Lv, F.; Huang, X.; Birks, H.J.B.; Telford, R.J.; Zhang, S.; Xu, Q.; Zhao, Y.; Wang, H.; Zhou, A.; et al. A novel procedure for pollen-based quantitative paleoclimate reconstructions and its application in China. Sci. China Earth Sci. 2017, 60, 2059–2066. [Google Scholar] [CrossRef]
- Halaś, A.; Lamentowicz, M.; Łuców, D.; Słowiński, M. Developing a new testate amoeba hydrological transfer function for permafrost peatlands of NW Siberia. Quat. Sci. Rev. 2023, 308, 108067. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Mazei, Y.; Kurina, I.; Swindles, G.T.; Bobrov, A.; Tsyganov, A.N.; Gu, Y.; Huang, X.; Xue, J.; et al. Developing a continental-scale testate amoeba hydrological transfer function for Asian peatlands. Quat. Sci. Rev. 2021, 258, 106868. [Google Scholar] [CrossRef]
- Amesbury, M.J.; Swindles, G.T.; Bobrov, A.; Charman, D.J.; Holden, J.; Lamentowicz, M.; Mallon, G.; Mazei, Y.; Mitchell, E.A.D.; Payne, R.J.; et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quat. Sci. Rev. 2016, 152, 132–151. [Google Scholar] [CrossRef]
- Gatis, N.; Benaud, P.; Anderson, K.; Ashe, J.; Grand-Clement, E.; Luscombe, D.J.; Puttock, A.; Brazier, R.E. Peatland restoration increases water storage and attenuates downstream stormflow but does not guarantee an immediate reversal of long-term ecohydrological degradation. Sci. Rep. 2023, 13, 15865. [Google Scholar] [CrossRef]
- Gao, C.; He, J.; Zhang, Y.; Cong, J.; Han, D.; Wang, G. Fire history and climate characteristics during the last millennium of the Great Hinggan Mountains at the monsoon margin in northeastern China. Glob. Planet. Change 2018, 162, 313–320. [Google Scholar] [CrossRef]
- Rahimi, J.; Laux, P.; Khalili, A. Assessment of climate change over Iran: CMIP5 results and their presentation in terms of Köppen–Geiger climate zones. Theor. Appl. Climatol. 2020, 141, 183–199. [Google Scholar] [CrossRef]
- Valjarević, A.; Milanović, M.; Gultepe, I.; Filipović, D.; Lukić, T. Updated Trewartha climate classification with four climate change scenarios. Geogr. J. 2022, 188, 506–517. [Google Scholar] [CrossRef]
- Gao, C.; He, J.; Cong, J.; Zhang, S.; Wang, G. Impact of forest fires generated black carbon deposition fluxes in Great Hinggan Mountains (China). Land Degrad. Dev. 2018, 29, 2073–2081. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Lin, Q.; Gao, C.; Wang, J.; Wang, G. Vegetation and climate change over the past 800 years in the monsoon margin of northeastern China reconstructed from n-alkanes from the Great Hinggan Mountain ombrotrophic peat bog. Org. Geochem. 2014, 76, 128–135. [Google Scholar] [CrossRef]
- Cong, J.; Gao, C.; Ji, S.; Li, X.; Han, D.; Wang, G. Changes in organic matter properties and carbon chemical stability in surface soils associated with changing vegetation communities in permafrost peatlands. Biogeochemistry 2023, 163, 139–153. [Google Scholar] [CrossRef]
- CMA. Introduce of Mohe. 2016. Available online: http://www.weather.com.cn/cityintro/101050703.html (accessed on 19 November 2016).
- Han, D.; Gao, C.; Liu, H.; Yu, X.; Li, Y.; Cong, J.; Wang, G. Vegetation dynamics and its response to climate change during the past 2000 years along the Amur River Basin, Northeast China. Ecol. Indic. 2020, 117, 106577. [Google Scholar] [CrossRef]
- Stebich, M.; Rehfeld, K.; Schlütz, F.; Tarasov, P.E.; Liu, J.; Mingram, J. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. 2015, 124, 275–289. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Q.; Chen, J.; Birks, H.J.; Liu, J.; Zhang, S.; Jin, L.; An, C.; Telford, R.J.; Cao, X.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 2015, 5, 11186. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Yu, Z.; Yang, M.; Ito, E.; Wang, S.; Madsen, D.B.; Huang, X.; Zhao, Y.; Sato, T.; Birks, J.B.H.; et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev. 2008, 27, 351–364. [Google Scholar] [CrossRef]
- Zhou, W.; Lu, X.; Wu, Z.; Deng, L.; Jull, A.J.T.; Beck, D.D. Peat record reflecting Holocene climatic change in the Zoigê Plateau and AMS radiocarbon dating. Chin. Sci. Bull. 2002, 47, 66–70. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J.; Reimer, R.W. CALIB 7.1. 2016. Available online: http://Calib.org (accessed on 13 November 2016).
- Charman, D.J.; Hendon, D.; Woodland, W.A. The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Quat. Sci. Rev. 2004, 23, 1867–1870. [Google Scholar]
- Zheng, X.; Harper, J.B.; Hope, G.; Mooney, S.D. A new preparation method for testate amoebae in minerogenic sediments. Mires. Peat. 2019, 24, 1–12. [Google Scholar]
- Sim, T.G.; Swindles, G.T.; Morris, P.J.; Baird, A.J.; Charman, D.J.; Amesbury, M.J.; Beilman, D.; Channon, A.; Gallego-Sala, A.V. Ecology of peatland testate amoebae in Svalbard and the development of transfer functions for reconstructing past water-table depth and pH. Ecol. Indic. 2021, 131, 108122. [Google Scholar] [CrossRef]
- Sim, T.G.; Swindles, G.T.; Morris, P.J.; Baird, A.J.; Cooper, C.L.; Gallego-Sala, A.V.; Charman, D.J.; Roland, T.P.; Borken, W.; Mullan, D.J.; et al. Divergent responses of permafrost peatlands to recent climate change. Environ. Res. Lett. 2021, 16, 034001. [Google Scholar] [CrossRef]
- Dumack, K.; Görzen, D.; González-Miguéns, R.; Siemensma, F.; Lahr, D.J.G.; Lara, E.; Bonkowski, M. Molecular investigation of Phryganella acropodia Hertwig et Lesser, 1874 (Arcellinida, Amoebozoa). Eur. J. Protistol. 2020, 75, 125707. [Google Scholar] [CrossRef]
- Charman, D.J.; Hendon, D.; Woodland, A.A. The Identification of Testate Amoebae (Protozoa: Rhizopoda) from British Oligotrophic Peats; Quaternary Research Association Technical Guide Series; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Leps, J.; Smilauer, P. Multivariate Analysis of Ecological Data using CANOCO: Using the Canoco for Windows 4.5 package. In Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003; pp. 43–59. [Google Scholar]
- Tsyganov, A.N.; Chertoprud, E.S.; Mazei, N.G.; Esaulov, A.S.; Sadchikov, I.P.; Mazei, Y.A. The Effects of Vegetation and the Environment on Testate Amoeba Assemblages in Sphagnum Peatlands in the Northern Caucasus Mountains. Diversity 2023, 15, 258. [Google Scholar] [CrossRef]
- Seppey, C.V.W.; Lara, E.; Broennimann, O.; Guisan, A.; Malard, L.; Singer, D.; Yashiro, E.; Fournier, B. Landscape structure is a key driver of soil protist diversity in meadows in the Swiss Alps. Landsc. Ecol. 2023, 38, 949–965. [Google Scholar] [CrossRef]
- Diaconu, A.-C.; Tóth, M.; Lamentowicz, M.; Heiri, O.; Kuske, E.; Tanţău, I.; Panait, A.-M.; Braun, M.; Feurdean, A. How warm? How wet? Hydroclimate reconstruction of the past 7500 years in northern Carpathians, Romania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 482, 1–12. [Google Scholar] [CrossRef]
- Warner, B.G.; Charman, D.J. Holocene changes on a peatland in northwestern Ontario interpreted from testate amoebae (Protozoa) analysis. Boreas 1994, 23, 270–279. [Google Scholar] [CrossRef]
- Cong, J.; Gao, C.; Zhang, Y.; Zhang, S.; He, J.; Wang, G. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China. Sci. Rep. 2016, 6, 22153. [Google Scholar] [CrossRef] [PubMed]
- Lamentowicz, Ł.; Gabka, M.; Lamentowicz, M. Species composition of testate amoebae (Protists) and environmental parameters in a Sphagnum peatland. Pol. J. Ecol. 2007, 55, 749–759. [Google Scholar]
- Magnan, G.; Lacourse, T.; Garneau, M. A comparison of Holocene testate amoeba assemblages and paleohydrological records from pollen slides and wet-sieved peat. Holocene 2020, 31, 73–82. [Google Scholar] [CrossRef]
- Marcisz, K.; Colombaroli, D.; Jassey, V.E.; Tinner, W.; Kolaczek, P.; Galka, M.; Karpinska-Kolaczek, M.; Slowinski, M.; Lamentowicz, M. A novel testate amoebae trait-based approach to infer environmental disturbance in Sphagnum peatlands. Sci. Rep. 2016, 6, 33907. [Google Scholar] [CrossRef]
- Mazei, Y.A.; Trulova, A.; Mazei, N.G.; Payne, R.J.; Tsyganov, A.N. Contributions of temporal and spatial variation to the diversity of soil-dwelling testate amoeba assemblages in a swampy forest. Pedobiologia 2020, 81, 150660. [Google Scholar] [CrossRef]
- Koenig, I.; Mulot, M.; Mitchell, E.A.D. Taxonomic and functional traits responses of Sphagnum peatland testate amoebae to experimentally manipulated water table. Ecol. Indic. 2018, 85, 342–351. [Google Scholar] [CrossRef]
- Amesbury, M.J.; Mallon, G.; Charman, D.J.; Hughes, P.D.M.; Booth, R.K.; Daley, T.J.; Garneau, M. Statistical testing of a new testate amoeba-based transfer function for water-table depth reconstruction on ombrotrophic peatlands in north-eastern Canada and Maine, United States. J. Quat. Sci. 2013, 28, 27–39. [Google Scholar] [CrossRef]
- Lamentowicz, L.; Lamentowicz, M.; Gabka, M. Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands 2008, 28, 164–175. [Google Scholar] [CrossRef]
- Han, D.; Gao, C.; Liu, H.; Li, Y.; Cong, J.; Yu, X.; Wang, G. Anthropogenic and climatic-driven peatland degradation during the past 150 years in the Greater Khingan Mountains, NE China. Land Degrad. Dev. 2021, 32, 4845–4857. [Google Scholar] [CrossRef]
- Chen, F.-H.; Chen, J.-H.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.-L.; Brooks, S.J.; Zhang, J.-W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Jin, H.; Jin, X.; He, R.; Luo, D.; Chang, X.; Wang, S.; Marchenko, S.S.; Yang, S.; Yi, C.; Li, S.; et al. Evolution of permafrost in China during the last 20 ka. Sci. China Earth Sci. 2018, 62, 1207–1223. [Google Scholar] [CrossRef]
- Cunningham, L.K.; Austin, W.E.N.; Knudsen, K.L.; Eiríksson, J.; Scourse, J.D.; Wanamaker, A.D.; Butler, P.G.; Cage, A.G.; Richter, T.; Husum, K.; et al. Reconstructions of surface ocean conditions from the northeast Atlantic and Nordic seas during the last millennium. Holocene 2013, 23, 921–935. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; He, Y.; Kong, X.; An, Z.; Wu, J.; Kelly, M.J.; Dykoski, C.A.; Li, X. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.E.; Cane, M.A.; Zebiak, S.E.; Clement, A. Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Clim. 2005, 18, 447–456. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Chang, P.; Parker, A.O.; Ji, L.; He, F. Deglacial Tropical Atlantic subsurface warming links ocean circulation variability to the West African Monsoon. Sci. Rep. 2017, 7, 15390. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, B. Interdecadal variations of the East Asian winter surface air temperature and possible causes. Chin. Sci. Bull. 2013, 58, 3969–3977. [Google Scholar] [CrossRef]
- Shindell, D.T.; Schmidt, G.A.; Mann, M.E.; Rind, D.; Waple, A. Solar forcing of regional climate change during the Maunder Minimum. Science 2001, 294, 2149–2152. [Google Scholar] [CrossRef]
Depth (cm) | Laboratory Code a | Dated Material | 14C yr BP | Calibrated Age |
---|---|---|---|---|
19 | XA12145 | Bulk peat | 175 ± 30 | 135–225 |
39 | XA12146 | Bulk peat | 328 ± 25 | 308–465 |
59 | XA12147 | Bulk peat | 866 ± 28 | 700–801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Han, D.; Cong, J.; Gao, C.; Wang, G. Hydroclimate Changes Based on Testate Amoebae in the Greater Khingan Mountains’ Peatland (NE China) during the Last Millennium. Atmosphere 2024, 15, 314. https://doi.org/10.3390/atmos15030314
Li X, Han D, Cong J, Gao C, Wang G. Hydroclimate Changes Based on Testate Amoebae in the Greater Khingan Mountains’ Peatland (NE China) during the Last Millennium. Atmosphere. 2024; 15(3):314. https://doi.org/10.3390/atmos15030314
Chicago/Turabian StyleLi, Xiao, Dongxue Han, Jinxin Cong, Chuanyu Gao, and Guoping Wang. 2024. "Hydroclimate Changes Based on Testate Amoebae in the Greater Khingan Mountains’ Peatland (NE China) during the Last Millennium" Atmosphere 15, no. 3: 314. https://doi.org/10.3390/atmos15030314
APA StyleLi, X., Han, D., Cong, J., Gao, C., & Wang, G. (2024). Hydroclimate Changes Based on Testate Amoebae in the Greater Khingan Mountains’ Peatland (NE China) during the Last Millennium. Atmosphere, 15(3), 314. https://doi.org/10.3390/atmos15030314