Downscaling and Wind Resource Assessment of Climatic Wind Speed Data Based on Deep Learning: A Case Study of the Tengger Desert Wind Farm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
Data Source | Temporal Resolution | Spatial Resolution | Availability |
---|---|---|---|
1822# | 10 min | / | 2017–2018 |
1823# | 2017–2018 | ||
2137# | 2017–2018 | ||
2138# | 2017–2018 | ||
ERA5 predictor variables (air temperature, specific humidity, geopotential height, zonal wind speed, meridional wind speed, and vertical wind speed) | Hourly | 0.25° | 1980–2023 |
CMIP6(CanESM5) forcing dataset | Monthly | 2.5° | 1982–2100 |
2.3. Data Preprocessing and Statistical Downscaling Based on the CNN Model
2.4. Metrics
3. Results
3.1. Testing and Validation of the CNN Downscaling Model
3.2. The Spatial Distribution of CNN Downscaled the CMIP6 Results
3.3. Future Mid-Term (2015–2050) Wind Speed Variations
4. Conclusions
- (1)
- The DL downscaling algorithm applied to CMIP6 wind speed data provides reliable results, demonstrating its effectiveness in capturing wind energy’s spatial and temporal characteristics in the study area. Validation using data from three effective wind towers indicates that the annual average wind speed errors are all below 4%.
- (2)
- The spatial distribution of wind speed variations is influenced by the topography, with higher wind speeds observed in areas of lower elevation and less resistance, such as in the northern and western parts of the wind farm area.
- (3)
- The future mid-term wind speed variations in the study area show subtle changes, with average wind speeds consistent with historical values. This stability is crucial for assessing wind power generation’s long-term profitability and reliability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Castro, M.; Salvador, S.; Gómez-Gesteira, M.; Costoya, X.; Carvalho, D.; Sanz-Larruga, F.J.; Gimeno, L. Europe, China, and the United States: Three different approaches to the development of offshore wind energy. Renew. Sustain. Energy Rev. 2019, 109, 55–70. [Google Scholar] [CrossRef]
- Tian, Q.; Huang, G.; Hu, K.; Niyogi, D. Observed global climate model-based changes in wind power potential over the Northern Hemisphere during 1979–2016. Energy 2019, 167, 1224–1235. [Google Scholar] [CrossRef]
- Vautard, R.; Cattiaux, J.; You, P.; Thépaut, J.N.; Ciais, P. Northern Hemisphere atmospheric stilling is partly attributed to an increase in surface roughness. Nat. Geosci. 2010, 3, 756–761. [Google Scholar] [CrossRef]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Van Niel, T.G.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416, 182–205. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Young, D.T.; Takle, E.S.; Arritt, R.W.; Flory, D.; Roads, J. Wind speed trends over the contiguous United States. J. Geophys. Res. Atmos. 2009, 114, D14015. [Google Scholar] [CrossRef]
- Chen, L.; Li, D.; Pryor, S.C. Wind speed trends over China: Quantifying the magnitude and assessing causality. Int. J. Climatol. 2013, 33, 2579–2590. [Google Scholar] [CrossRef]
- Fant, C.; Schlosser, C.A.; Strzepek, K. The impact of climate change on wind and solar resources in southern Africa. Appl. Energy 2016, 161, 556–564. [Google Scholar] [CrossRef]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. Intercomparison makes for a better climate model. Eos 1997, 78, 445–451. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Stott, P.A.; Mitchell JF, B.; Allen, M.R.; Delworth, T.L.; Gregory, J.M.; Meehl, G.A.; Santer, B.D. Observational constraints on past attributable warming and predictions of future global warming. J. Clim. 2006, 19, 3055–3069. [Google Scholar] [CrossRef]
- Lee, J.Y.; Wang, B. Future change of global monsoon in the CMIP5. Clim. Dyn. 2014, 42, 101–119. [Google Scholar] [CrossRef]
- Zheng, C.; Li, X.; Luo, X.; Chen, X.; Qian, Y.; Zhang, Z.; Chen, Y. Projection of Future Global Offshore Wind Energy Resources using CMIP Data. Atmos. Ocean 2019, 57, 134–148. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl. Acad. Sci. USA 2011, 108, 8167–8171. [Google Scholar] [CrossRef]
- Kulkarni, S.; Deo, M.C.; Ghosh, S. Framework for assessment of climate change impact on offshore wind energy. Meteorol. Appl. 2018, 25, 94–104. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, Z.; Zou, L.; Chen, X.; Yu, Y.; Wang, B.; Bao, Q.; Bao, Y.; Cao, J.; He, B.; et al. Development of Climate and Earth System Models in China: Past Achievements and New CMIP6 Results. J. Meteorol. Res. 2020, 34, 1–19. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef]
- Harris, L.; McRae, A.T.; Chantry, M.; Dueben, P.D.; Palmer, T.N. A generative deep learning approach to stochastic downscaling of precipitation forecasts. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003120. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, J.; Nerini, D.; Berne, A. Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7211–7223. [Google Scholar] [CrossRef]
- Thrasher, B.; Xiong, J.; Wang, W.; Melton, F.; Michaelis, A.; Nemani, R. Downscaled climate projections suitable for resource management. Eos Trans. Am. Geophys. Union 2013, 94, 321–323. [Google Scholar] [CrossRef]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections; United States Agency for International Development by Tetra Tech ARD: Washington, DC, USA, 2014; pp. 1–42. [Google Scholar]
- Wilby, R.L.; Dawson, C.W. The statistical downscaling model: Insights from one decade of application. Int. J. Climatol. 2013, 33, 1707–1719. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do RK, G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology—Insights into Imaging; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ahmed, S.F.; Alam MS, B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Gandomi, A.H. Deep learning modeling techniques: Progress, applications, advantages, and challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [Google Scholar] [CrossRef]
- Bazgir, O.; Zhang, R.; Dhruba, S.R.; Rahman, R.; Ghosh, S.; Pal, R. Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks. Nat. Commun. 2020, 11, 4391. [Google Scholar] [CrossRef]
- Kheir AM, S.; Elnashar, A.; Mosad, A.; Govind, A. An improved deep learning procedure for statistical downscaling of climate data. Heliyon 2023, 9, e18200. [Google Scholar] [CrossRef] [PubMed]
- Touma, J.S. Dependence of the wind profile power law on stability for various locations. J. Air Pollut. Control Assoc. 1977, 27, 863–866. [Google Scholar] [CrossRef]
- Han, F.; Li, H.; Zhu, M.; Zhang, R.; Zhou, W. Application of a meso-microscale coupled modeling method to wind resource assessment. Energy Eng. 2023, 43, 32–40. [Google Scholar]
Wind Speed of Measurements (m·s−1) | WRF-Out Wind Speed (m·s−1) | CMIP6 (ssp245/ssp585) | ||||||
---|---|---|---|---|---|---|---|---|
Wind Speed (m·s−1) | RMSE (m·s−1) | MB (m·s−1) | BIAS (%) | R2 | IOA | |||
1822# | 6.93 | 6.91 | 6.70/6.83 | 2.16/2.02 | −0.23/−0.1 | 3.32%/1.44% | 0.61/0.66 | 0.81/0.80 |
1823# | 7.03 | 6.82 | 6.96/7.13 | 2.07/2.36 | −0.07/0.1 | 0.99%/1.42% | 0.64/0.62 | 0.87/0.85 |
2137# | 5.74 | 5.85 | 5.87/5.92 | 1.49/1.98 | 0.13/0.18 | 2.26%/3.34% | 0.60/0.61 | 0.84/0.82 |
2138# | 5.64 | 5.51 | 5.82/5.79 | 1.36/1.68 | −0.11/0.16 | 1.89%/2.76% | 0.67/0.62 | 0.86/0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Luo, Q.; Yuan, L. Downscaling and Wind Resource Assessment of Climatic Wind Speed Data Based on Deep Learning: A Case Study of the Tengger Desert Wind Farm. Atmosphere 2024, 15, 271. https://doi.org/10.3390/atmos15030271
Zhou H, Luo Q, Yuan L. Downscaling and Wind Resource Assessment of Climatic Wind Speed Data Based on Deep Learning: A Case Study of the Tengger Desert Wind Farm. Atmosphere. 2024; 15(3):271. https://doi.org/10.3390/atmos15030271
Chicago/Turabian StyleZhou, Hao, Qi Luo, and Ling Yuan. 2024. "Downscaling and Wind Resource Assessment of Climatic Wind Speed Data Based on Deep Learning: A Case Study of the Tengger Desert Wind Farm" Atmosphere 15, no. 3: 271. https://doi.org/10.3390/atmos15030271
APA StyleZhou, H., Luo, Q., & Yuan, L. (2024). Downscaling and Wind Resource Assessment of Climatic Wind Speed Data Based on Deep Learning: A Case Study of the Tengger Desert Wind Farm. Atmosphere, 15(3), 271. https://doi.org/10.3390/atmos15030271