Spatiotemporal Variability Analysis of Glaciers in the Hindukush Region of Pakistan Using Remote Sensing Data
Abstract
:1. Introduction
2. Study Area, Datasets and Methodology
2.1. Study Area
2.2. Methodologies
2.3. Kappa Coefficient
3. Results and Discussions
3.1. Temperature Profile of Gilgit Watershed
3.2. Solar Radiation Intensity in the Gilgit Watershed
3.3. Precipitatiοn in the Gilgit Watershed
3.4. Glacier Change Analysis
3.4.1. Bhort Glacier Change Analysis
3.4.2. Bad-e-Swat Glacier Change Analysis
3.4.3. East Gammu Glacier
3.4.4. Karamber Glacier
3.4.5. Phakor Glacier
3.5. Glacier Center Lines
3.6. Accuracy Assessment on Mapping of Glaciers
Error Matrix
3.7. Consequences of the Variations in Glacier Cover Area
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 335–344. [Google Scholar]
- Barandun, M.; Huss, M.; Usubaliev, R.; Azisov, E.; Berthier, E.; Kääb, A.; Bolch, T.; Hoelzle, M. Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. Cryosphere 2018, 12, 1899–1919. [Google Scholar] [CrossRef]
- Ahmad, S.; Israr, M.; Liu, S.; Hayat, H.; Gul, J.; Wajid, S.; Ashraf, M.; Baig, S.U.; Tahir, A.A. Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan). Geocarto Int. 2018, 35, 711–734. [Google Scholar] [CrossRef]
- Huggel, C.; Kaab, A.; Haeberli, W.; Teysseire, P.; Paul, F. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Can. Geotech. J. 2002, 39, 316–330. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Tian, L.; Khan, A. Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. J. Hydrol. 2019, 574, 467–475. [Google Scholar] [CrossRef]
- Armstrong, R.L.; Rittger, K.; Brodzik, M.J.; Racoviteanu, A.; Barrett, A.P.; Singh Khalsa, S.-J.; Raup, B.; Hill, A.F.; Khan, A.L.; Wilson, A.M.; et al. Runoff from glacier ice and seasonal snow in High Asia: Separating melt water sources in river flow. Reg. Environ. Chang. 2019, 19, 1249–1261. [Google Scholar] [CrossRef]
- Zemp, M.; Nussbaumer, S.U.; Gärtner-Roer, I.; Huber, J.; Machguth, H.; Paul, F.; Hoelzle, M. (Eds.) WGMS (2017) Global Glacier Change Bulletin No. 2 (2014–2015); ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO; World Glacier Monitoring Service: Zurich, Switzerland, 1993; p. 244. [Google Scholar]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote sensing estimates of glacier mass balances in the himachal pradesh (Western Himalaya, India). Remote Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kaab, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Armstrong, R.; Williams, M.W. Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya. Water Resour. Res. 2013, 49, 5117–5133. [Google Scholar] [CrossRef]
- Klare, M.T. Climate Change, Water Scarcity, and the Potential for Interstate Conflict in South Asia. J. Strateg. Secur. 2020, 13, 109–122. [Google Scholar] [CrossRef]
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef]
- Vuille, M.; Bradley, R.S. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys. Res. Lett. 2000, 27, 3885–3888. [Google Scholar] [CrossRef]
- Pareta, K.; Pareta, U. New watershed codification system for Indian river basins. J. Hydrol. Environ. Res. 2014, 2, 31–40. [Google Scholar]
- Ali, K.; Bajracharya, R.M.; Sitaula, B.K.; Raut, N.; Koirala, H.L. Morphometric Analysis of Gilgit River Basin in Mountainous Region of Gilgit-Baltistan Province, Northern Pakistan. J. Geosci. Environ. Prot. 2017, 5, 70. [Google Scholar] [CrossRef]
- Zhen, X.; Li, J. Remote Sensing Monitoring of Glaciers, Snow and Lake Ice in Qinghai-Xizang (Tibetan) Plateau and Their Influence on Environments; Tang, M., Cheng, G., Lin, Z., Eds.; Guandong Science Technology Press: Guangzhou, China, 1998; pp. 279–308. [Google Scholar]
- Ali, K.; Bajracharya, R.M.; Chapagain, N.R.; Raut, N.; Sitaula, B.K.; Begum, F.; Khan, M.Z.; Ali, M.; Ahmed, A. Analyzing Land Cover Change Using Remote Sensing and GIS: A Case Study of Gilgit River Basin, North Pakistan. Int. J. Econ. Environ. Geol. 2019, 10, 100–105. [Google Scholar]
- Nazeer, A.; Maskey, S.; Skaugen, T.; McClain, M.E. Simulating the hydrological regime of the snow fed and glaciarised Gilgit Basin in the Upper Indus using global precipitation products and a data parsimonious precipitation-runoff model. Sci. Total Environ. 2022, 802, 149872. [Google Scholar] [CrossRef]
- Kanwal, S.; Atif, S.; Shafiq, M. GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins. Geomat. Nat. Hazards Risk 2017, 8, 348–366. [Google Scholar] [CrossRef]
- Qaisar, M.; Shafiq, M.; Ghauri, B.M.K.; Younes, I.; Abuzar, M.K. Comparative Analysis of Different Remote Sensing Techniques for Mapping of Supraglacial Lakes on Hispar Glacier. Int. J. Econ. Environ. Geol. 2019, 9, 66–74. [Google Scholar]
- Rahim, I.; Ali, S.M.; Aslam, M. GIS Based landslide susceptibility mapping with application of analytical hierarchy process in District Ghizer, Gilgit Baltistan Pakistan. J. Geosci. Environ. Prot. 2018, 6, 34–49. [Google Scholar] [CrossRef]
- Willhauck, G.; Schneider, T.; De Kok, R.; Ammer, U. Comparison of object oriented classification techniques and standard image analysis for the use of change detection between SPOT multispectral satellite images and aerial photos. In Proceedings of XIX ISPRS Congress; IAPRS: Amsterdam, The Netherlands, 2000; Volume 33. [Google Scholar]
- Nijhawan, R.; Garg, P.; Thakur, P. A comparison of classification techniques for glacier change detection using multispectral images. Perspect. Sci. 2016, 8, 377–380. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 310–325. [Google Scholar]
- Morgado, P.; Toger, M.; Abrantes, P.; Fiegel, J. A bottom up approach to modeling habitat connectivity dynamics through networks analysis. In Sustainable Development–Authoritative and Leading Edge Content for Environmental Management; IntechOpen: Rijeka, Croatia, 2012; pp. 131–148. [Google Scholar]
- Mukhopadhyay, B.; Khan, A. A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate. J. Hydrol. 2015, 527, 119–132. [Google Scholar] [CrossRef]
- Javed, Z.H.; Khan, S.; Wahid, A.; Ranjha, A.N.; Hasan, M. Climate of the Gilgit-Baltistan Province, Pakistan. Int. J. Econ. Environ. Geol. 2020, 11, 16–21. [Google Scholar] [CrossRef]
- Latif, Y.; Ma, Y.; Ma, W.; Muhammad, S.; Adnan, M.; Yaseen, M.; Fealy, R. Differentiating Snow and Glacier Melt Contribution to Runoff in the Gilgit River Basin via Degree-Day Modelling Approach. Atmosphere 2020, 11, 1023. [Google Scholar] [CrossRef]
- Cao, B.; Guan, W.; Li, K.; Wen, Z.; Han, H.; Pan, B. Area and Mass Changes of Glaciers in the West Kunlun Mountains Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018. Remote Sens. 2020, 12, 2632. [Google Scholar] [CrossRef]
Satellite/Sensor | Year | Scene ID | Path | Row | Cloud Cover | Acquisition Date |
---|---|---|---|---|---|---|
Landsat 5 TM | 1988 | LT05_L1TP_150035_19881027_20170205_01 | 150 | 35 | 3% | 27 October 1988 |
Landsat 5 TM | 1994 | LT05_L1TP_150035_19940708_20170113_01 | 150 | 35 | 4% | 8 July 1994 |
Landsat 7 ETM+ | 1999 | LE07_L1TP_150035_19990916_20170217_01 | 150 | 35 | 1% | 16 September 1999 |
Landsat 8 OLI | 2014 | LC08_L1TP_150035_20140917_20170419_01 | 150 | 35 | 1.25% | 17 September 2014 |
Landsat 8 OLI | 2018 | LC08_L1TP_150035_20180912_20180927_01 | 150 | 35 | 1.41% | 12 September 2018 |
Class | Glc | Debris | Water Bodies | Other (Rocks etc.) | Row Total | User Accuracy (UsAc) [on a Scale of 0–1] |
---|---|---|---|---|---|---|
Glacier Cover | 133 | 6 | 0 | 3 | 142 | 0.937 |
Debris Cover | 8 | 35 | 0 | 0 | 43 | 0.814 |
Water Bodies | 0 | 0 | 20 | 1 | 21 | 0.952 |
Other (rocks etc.) | 4 | 0 | 2 | 38 | 44 | 0.864 |
Col Total | 145 | 41 | 22 | 42 | 250 | |
Producer Accuracy (PrAc) [on a scale of 0–1] | 0.917 | 0.854 | 0.909 | 0.905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, M.; Shafiq, M.; Nergis, Y. Spatiotemporal Variability Analysis of Glaciers in the Hindukush Region of Pakistan Using Remote Sensing Data. Atmosphere 2024, 15, 193. https://doi.org/10.3390/atmos15020193
Irfan M, Shafiq M, Nergis Y. Spatiotemporal Variability Analysis of Glaciers in the Hindukush Region of Pakistan Using Remote Sensing Data. Atmosphere. 2024; 15(2):193. https://doi.org/10.3390/atmos15020193
Chicago/Turabian StyleIrfan, Muhammad, Muhammad Shafiq, and Yasmin Nergis. 2024. "Spatiotemporal Variability Analysis of Glaciers in the Hindukush Region of Pakistan Using Remote Sensing Data" Atmosphere 15, no. 2: 193. https://doi.org/10.3390/atmos15020193
APA StyleIrfan, M., Shafiq, M., & Nergis, Y. (2024). Spatiotemporal Variability Analysis of Glaciers in the Hindukush Region of Pakistan Using Remote Sensing Data. Atmosphere, 15(2), 193. https://doi.org/10.3390/atmos15020193