Representing Ozone Formation from Volatile Chemical Products (VCP) in Carbon Bond (CB) Chemical Mechanisms
Abstract
:1. Introduction
2. Methodology
2.1. VCP Emissions Analysis
2.2. VCPs Selected for Chemical Mechanism Development
2.3. IVOC and SOA Formation
2.4. Developing VCP Gas-Phase Chemical Mechanisms
2.5. Ozone-Forming Tendency of VCP Model Species
3. Results and Discussion
3.1. Alcohols
3.2. Ethers
3.3. Esters
3.4. Alkanes
3.5. Siloxanes
3.6. Ozone Formation Potential of VCPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Piccot, S.D.; Watson, J.J.; Jones, J.W. A global inventory of volatile organic compound emissions from anthropogenic sources. J. Geophys. Res. Atmos. 1992, 97, 9897–9912. [Google Scholar] [CrossRef]
- Li, J.; Hao, Y.; Simayi, M.; Shi, Y.; Xi, Z.; Xie, S. Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals. Atmos. Chem. Phys. 2019, 19, 5905–5921. [Google Scholar] [CrossRef]
- U. S. Environmental Protection Agency. Technical Support Document (TSD): Preparation of Emissions Inventories for the 2020 North American Emissions Modeling Platform, EPA-454/B-23-004, Research Triangle Park, NC. Available online: https://www.epa.gov/system/files/documents/2023-03/2016v3_EmisMod_TSD_January2023_1.pdf (accessed on 25 January 2024).
- McDonald, B.C.; De Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Khare, P.; Gentner, D.R. Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality. Atmos. Chem. Phys. 2018, 18, 5391–5413. [Google Scholar] [CrossRef]
- Luo, D.; Corey, R.; Propper, R.; Collins, J.; Komorniczak, A.; Davis, M.; Berger, N.; Lum, S. Comprehensive environmental impact assessment of exempt volatile organic compounds in California. Environ. Sci. Policy 2011, 14, 585–593. [Google Scholar] [CrossRef]
- Seltzer, K.M.; Murphy, B.N.; Pennington, E.A.; Allen, C.; Talgo, K.; Pye, H.O. Volatile chemical product enhancements to criteria pollutants in the United States. Environ. Sci. Technol. 2021, 56, 6905–6913. [Google Scholar] [CrossRef]
- Sasidharan, S.; He, Y.; Akherati, A.; Li, Q.; Li, W.; Cocker, D.; McDonald, B.C.; Coggon, M.M.; Seltzer, K.M.; Pye, H.O.; et al. Secondary Organic Aerosol Formation from Volatile Chemical Product Emissions: Model Parameters and Contributions to Anthropogenic Aerosol. Environ. Sci. Technol. 2023, 57, 11891–11902. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Zhai, H.; Xue, S.; Zhu, T.; Shao, Y.; Liu, Z.; Emery, C.; Yarwood, G.; Wang, Y.; et al. Recommendations on benchmarks for numerical air quality model applications in China–Part 1: PM 2.5 and chemical species. Atmos. Chem. Phys. 2021, 21, 2725–2743. [Google Scholar] [CrossRef]
- Belis, C.A.; Pirovano, G.; Villani, M.G.; Calori, G.; Pepe, N.; Putaud, J.P. Comparison of source apportionment approaches and analysis of non-linearity in a real case model application. Geosci. Model Dev. 2021, 14, 4731–4750. [Google Scholar] [CrossRef]
- Levy, H. Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science 1971, 173, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Kaduwela, A.; Luecken, D.; Carter, W.; Derwent, R. New directions: Atmospheric chemical mechanisms for the future. Atmos. Environ. 2015, 122, 609–610. [Google Scholar] [CrossRef]
- Master Chemical Mechanism (v3.3.1). Available online: https://mcm.york.ac.uk/MCM/ (accessed on 22 December 2023).
- Gery, M.W.; Whitten, G.Z.; Killus, J.P.; Dodge, M.C. A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. Atmos. 1989, 94, 12925–12956. [Google Scholar] [CrossRef]
- Whitten, G.Z.; Heo, G.; Kimura, Y.; McDonald-Buller, E.; Allen, D.T.; Carter, W.P.; Yarwood, G. A new condensed toluene mechanism for Carbon Bond: CB05-TU. Atmos. Environ. 2010, 44, 5346–5355. [Google Scholar] [CrossRef]
- Yarwood, G.; Jung, J.; Whitten, G.Z.; Heo, G.; Mellberg, J.; Estes, M. Updates to the Carbon Bond mechanism for version 6 (CB6). In Proceedings of the 9th Annual CMAS Conference, Chapel Hill, NC, USA, 11–13 October 2010; Available online: https://cmascenter.org/conference/2010/abstracts/emery_updates_carbon_2010.pdf (accessed on 22 December 2023).
- Luecken, D.J.; Yarwood, G.; Hutzell, W.T. Multipollutant modeling of ozone, reactive nitrogen and HAPs across the continental US with CMAQ-CB6. Atmos. Environ. 2019, 201, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Appel, K.W.; Bash, J.O.; Fahey, K.M.; Foley, K.M.; Gilliam, R.C.; Hogrefe, C.; Hutzell, W.T.; Kang, D.; Mathur, R.; Murphy, B.N.; et al. The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3. 1: System updates and evaluation. Geosci. Model Dev. 2021, 14, 2867–2897. [Google Scholar] [CrossRef]
- Ramboll. User Guide Comprehensive Air Quality Model with Extensions, Version 7.2. 2022. Available online: www.camx.com (accessed on 22 December 2023).
- Manders, A.M.; Builtjes, P.J.; Curier, L.; Denier van der Gon, H.A.; Hendriks, C.; Jonkers, S.; Kranenburg, R.; Kuenen, J.J.; Segers, A.J.; Timmermans, R.M.; et al. Curriculum vitae of the LOTOS–EUROS (v2. 0) chemistry transport model. Geosci. Model Dev. 2017, 10, 4145–4173. [Google Scholar] [CrossRef]
- Wolfe, G.M.; Marvin, M.R.; Roberts, S.J.; Travis, K.R.; Liao, J. The framework for 0-D atmospheric modeling (F0AM) v3. 1. Geosci. Model Dev. 2016, 9, 3309–3319. [Google Scholar] [CrossRef]
- Seltzer, K.M.; Pennington, E.; Rao, V.; Murphy, B.N.; Strum, M.; Isaacs, K.K.; Pye, H.O. Reactive organic carbon emissions from volatile chemical products. Atmos. Chem. Phys. 2021, 21, 5079–5100. [Google Scholar] [CrossRef]
- Ramboll. Speciation Tool User’s Guide, version 5.0. 2020. Available online: https://github.com/CMASCenter/Speciation-Tool/blob/master/docs/Ramboll_sptool_users_guide_V5.pdf (accessed on 22 December 2023).
- Carter, W.P. Development of ozone reactivity scales for volatile organic compounds. Air Waste 1994, 44, 881–899. [Google Scholar] [CrossRef]
- U. S. Environmental Protection Agency. Final Report, SPECIATE Version 5.0, Database Development Documentation, EPA/600/R-19/988, Research Triangle Park, NC. Available online: https://www.epa.gov/air-emissions-modeling/speciate-51-and-50-addendum-and-final-report (accessed on 22 December 2023).
- Carter, W.P.L. Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin Reactivities for Regulatory Applications, Prepared for California Air Resources Board Contract 07-339. Available online: https://intra.engr.ucr.edu/~carter/SAPRC/MIR10.pdf (accessed on 22 December 2023).
- Huang, L.; Liu, H.; Yarwood, G.; Wilson, G.; Tao, J.; Han, Z.; Ji, D.; Wang, Y.; Li, L. Modeling of secondary organic aerosols (SOA) based on two commonly used air quality models in China: Consistent S/IVOCs contribution but large differences in SOA aging. Sci. Total Environ. 2023, 903, 166162. [Google Scholar] [CrossRef]
- IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, Evaluated kinetic data. Available online: https://iupac.aeris-data.fr/en/home-english/ (accessed on 22 December 2023).
- NASA Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Panel for Data Evaluation, JPL Publication No. 19-5. Available online: https://jpldataeval.jpl.nasa.gov/pdf/NASA-JPL%20Evaluation%2019-5.pdf (accessed on 22 December 2023).
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 324–5335. [Google Scholar] [CrossRef]
- Carter, W.P. Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales. California Air Resources Board, Research Division. 2007. Available online: https://intra.engr.ucr.edu/~carter/SAPRC/saprc07.pdf (accessed on 25 January 2024).
- Dunker, A.M. The decoupled direct method for calculating sensitivity coefficients in chemical kinetics. J. Chem. Phys. 1984, 81, 2385–2393. [Google Scholar] [CrossRef]
- Dunker, A.M.; Yarwood, G.; Ortmann, J.P.; Wilson, G.M. Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model. Environ. Sci. Technol. 2002, 36, 2953–2964. [Google Scholar] [CrossRef]
- California Energy Commission. Air Quality Implications of an Energy Scenario for California Using High Levels of Electrification, report CEC-500-2019-049. Available online: https://www.energy.ca.gov/sites/default/files/2021-06/CEC-500-2019-049.pdf (accessed on 22 December 2023).
- Wallington, T.J.; Hurley, M.D.; Maurer, T.; Barnes, I.; Becker, K.H.; Tyndall, G.S.; Orlando, J.J.; Pimentel, A.S.; Bilde, M. Atmospheric oxidation mechanism of methyl formate. J. Phys. Chem. A 2001, 105, 5146–5154. [Google Scholar] [CrossRef]
- Tuazon, E.C.; Aschmann, S.M.; Atkinson, R.; Carter, W.P. The Reactions of Selected Acetates with the OH Radical in the Presence of NO: Novel Rearrangement of Alkoxy Radicals of Structure RC (O) OCH (Ȯ) Ŕ. J. Phys. Chem. A 1998, 102, 2316–2321. [Google Scholar] [CrossRef]
- Orlando, J.J.; Tyndall, G.S.; Wallington, T.J. The atmospheric chemistry of alkoxy radicals. Chem. Rev. 2003, 103, 4657–4690. [Google Scholar] [CrossRef] [PubMed]
- Le Calve, S.; Le Bras, G.; Mellouki, A. Temperature dependence for the rate coefficients of the reactions of the OH radical with a series of formates. J. Phys. Chem. A 1997, 101, 5489–5493. [Google Scholar] [CrossRef]
- Szilágyi, I.; Dóbé, S.; Bérces, T.; Márta, F.; Viskolcz, B. Direct kinetic study of reactions of hydroxyl radicals with alkyl formates. Z. Für Phys. Chem. 2004, 218, 479–492. [Google Scholar] [CrossRef]
- Yeh, G.K.; Ziemann, P.J. Alkyl nitrate formation from the reactions of c8–c14 n-alkanes with oh radicals in the presence of no x: Measured yields with essential corrections for gas–wall partitioning. J. Phys. Chem. A 2014, 118, 8147–8157. [Google Scholar] [CrossRef] [PubMed]
- Praske, E.; Otkjær, R.V.; Crounse, J.D.; Hethcox, J.C.; Stoltz, B.M.; Kjaergaard, H.G.; Wennberg, P.O. Atmospheric autoxidation is increasingly important in urban and suburban North America. Proc. Natl. Acad. Sci. USA 2018, 115, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Alton, M.W.; Browne, E.C. Atmospheric chemistry of volatile methyl siloxanes: Kinetics and products of oxidation by OH radicals and Cl atoms. Environ. Sci. Technol. 2020, 54, 5992–5999. [Google Scholar] [CrossRef] [PubMed]
- Alton, M.W.; Johnson, V.L.; Sharma, S.; Browne, E.C. Volatile Methyl Siloxane Atmospheric Oxidation Mechanism from a Theoretical Perspective—How is the Siloxanol Formed? J. Phys. Chem. A 2023, 127, 10233–10242. [Google Scholar] [CrossRef]
- Kang, H.G.; Chen, Y.; Park, Y.; Berkemeier, T.; Kim, H. Volatile oxidation products and secondary organosiloxane aerosol from D 5+ OH at varying OH exposures. Atmos. Chem. Phys. 2023, 23, 14307–14323. [Google Scholar] [CrossRef]
Name | Description | NC | NH | NO | Mr | HSCP | HSCPT |
---|---|---|---|---|---|---|---|
DEE | Diethyl ether | 4 | 10 | 1 | 74.1 | 11 | 6600 |
DME | Dimethyl ether | 2 | 6 | 1 | 46.1 | 7.7 | 4900 |
EDOH | 1,2-ethanediol (ethylene glycol) | 2 | 6 | 2 | 62.1 | 6.60 × 105 | 8800 |
ESTR | Larger esters (C4+, excluding ethyl acetate) | 4 | 7 | 2 | 87.1 | 6 | 5900 |
ETAC | Ethyl acetate | 4 | 8 | 2 | 88.1 | 6 | 5900 |
ETFM | Ethyl formate | 3 | 6 | 2 | 74.1 | 3.4 | 4600 |
ETHR | Larger ethers (C4+, excluding diethyl ether) | 4 | 8 | 1 | 72.1 | 1.1 | 6600 |
HKET | Hydroxy-peroxyketone from HPAR | 8 | 16 | 4 | 176.2 | 7700 | 4600 |
HPAR | Heavy PAR, based on n-dodecane | 12 | 26 | 170.3 | 1.20 × 10−4 | 4000 | |
IBTA | 2-methylpropane (i-butane) | 4 | 10 | 58.1 | 9.20 × 10−4 | 2700 | |
IPOH | i-propanol | 3 | 8 | 1 | 60.1 | 130 | 7500 |
MEAC | Methyl acetate | 3 | 6 | 2 | 74.1 | 8.1 | 4900 |
MEFM | Methyl formate | 2 | 4 | 2 | 60.1 | 4.1 | 4000 |
NPOH | n-propanol | 3 | 8 | 1 | 60.1 | 140 | 6900 |
PDOH | 1,2-propanediol (propylene glycol) | 3 | 8 | 2 | 76.1 | 2.70 × 105 | 9500 |
ROH | Larger alcohols (C4+) | 4 | 10 | 1 | 74.1 | 110 | 7200 |
SXD5 | Siloxanes as D5 (decamethylcyclopentasiloxane) | 10 | 30 | 5 | 370.6 | 3.00 × 10−5 | 4000 |
HPO2 | Peroxy radical from HPAR | 12 | 25 | 3 | N/A | ||
AUTX | Operator for HPO2 autoxidation | 2 | N/A |
No. | Reaction | Rate Expression | k298 |
---|---|---|---|
R1 | EDOH + OH = GLYD + HO2 | k = 1.45 × 10−11 | 1.45 × 10−11 |
R2 | PDOH + OH = 0.61 ACET + 0.39 ALDX + 0.39 PAR + HO2 | k = 2.10 × 10−11 | 2.10 × 10−11 |
R3 | IPOH + OH = 0.86 ACET + 0.14 ALD2 + 0.14 FORM + 0.86 HO2 + 0.14 XO2H + 0.14 RO2 | k = 2.60 × 10−12 exp(200/T) | 5.09 × 10−12 |
R4 | NPOH + OH = 0.55 ALDX + 0.43 ALD2 + 0.55 PAR + 0.43 FORM + 0.48 HO2 + 0.5 XO2H + 0.02 XO2N + 0.52 RO2 | k = 4.60 × 10−12 exp(70/T) | 5.82 × 10−12 |
R5 | ROH + OH = 0.2 ALDX + 2.71 PAR + 0.77 ROR + 0.2 HO2 + 0.77 XO2 + 0.03 XO2N + 0.8 RO2 | k = 7.00 × 10−12 exp(60/T) | 8.56 × 10−12 |
R6 | DME + OH = 0.99 MEFM + 0.99 XO2H + 0.01 XO2N + RO2 | k = 5.70 × 10−12 exp(−215/T) | 2.77 × 10−12 |
R7 | DEE + OH = 0.85 ETFM + 0.07 FORM + 0.85 MEO2 + 0.92 XO2 + 0.07 XO2H + 0.08 XO2N + 1.92 RO2 | k = 8.91× 10−18 T2 exp(837/T) | 1.31 × 10−11 |
R8 | ETHR + OH = 0.62 ESTR + 0.3 ALDX + 0.3 PAR + 0.62 MEO2 + 0.3 XO2H + 0.62 XO2 + 0.08 XO2N + RO2 | k = 8.90 × 10−12 exp(100/T) | 1.24 × 10−11 |
R9 | MEFM + OH = 0.17 FACD + 0.55 CO + 0.45 MEO2 + 0.55 XO2H + 0.005 XO2N + RO2 | k = 9.39× 10−13 exp(−461/T) | 2.00 × 10−13 |
R10 | MEAC + OH = 0.67 AACD + 0.67 CO + 0.32 MEO2 + 0.67 XO2H + 0.32 XO2 + 0.01 XO2N + 1.32 RO2 | k = 8.54 × 10−19 T2 exp(455/T) | 3.49 × 10−13 |
R11 | ETFM + OH = 0.78 AACD + 0.78 CO + 0.2 ALD2 + 0.98 XO2H + 0.02 XO2N + 1.2 RO2 | k = 5.66 × 10−13 exp(134/T) | 8.87 × 10−13 |
R12 | ETAC + OH = 0.93 AACD + 0.93 C2O3 + 0.93 XO2 + 0.07 XO2N + RO2 | k = 6.92 × 10−19 T2 exp(986/T) | 1.68 × 10−12 |
R13 | ESTR + OH = 0.13 AACD + 0.13 FACD + 1.9 PAR + 0.63 ROR + 0.25 CXO3 + 0.89 XO2 + 0.11 XO2N + RO2 | k = 2.50 × 10−13exp(740/T) | 2.99 × 10−12 |
R14 | SXD5 + OH = FORM + FACD + XO2H + RO2 | k = 2.10 × 10−12 | 2.10 × 10−12 |
R15 | IBTA + OH = 0.78 ACET + 0.19 ALDX + 0.78 MEO2 + 0.78 XO2 + 0.19 XO2H + 0.03 XO2N + RO2 | k = 5.40 × 10−12 exp(−285/T) | 2.08 × 10−12 |
R16 | HPAR + OH = HPO2 + RO2 | k = 2.54 × 10−11 exp(−180/T) | 1.39 × 10−11 |
R17 | HPO2 + NO = NTR2 | k = k(ref)/K k(ref) = k(RO2 + NO) K = 9.09 × 102 exp(−1658/T) | 2.59 × 10−12 |
R18 | HPO2 + NO = NO2 + HKET + AUTX | k = k(ref)/K k(ref) = k(RO2 + NO) K = 1.43 × 10−1 exp(679/T) | 6.46 × 10−12 |
R19 | HPO2 + HO2 = ROOH + 0.5 HKET | k = k(ref)/K k(ref) = k(RO2 + HO2) K = 0.707 | 2.14 × 10−11 |
R20 | HPO2 + RO2 = 0.6 HKET + 0.6 AUTX + 0.6 RO2 | k = k(ref)/K k(ref) = k(RO2 + RO2) K = 1.0 | 5.00 × 10−13 |
R21 | AUTX + NO = 0.82 NO2 + 0.82 HO2 + 0.18 NTR2 | k = k(ref)/K k(ref) = k(RO2 + NO) K = 1.0 | 9.04 × 10−12 |
R22 | AUTX + HO2 = ROOH | k = k(ref)/K k(ref) = k(RO2 + HO2) K = 0.707 | 2.14 × 10−11 |
R23 | AUTX = ROOH + HO2 | k = 2.20 × 108 exp(−6200/T) | 2.03 × 10−1 |
R24 | HKET + OH = 0.35 HKET + 0.35 KET + 0.47 ALDX + 0.7 HO2 + 0.24 XO2H + 0.07 XO2N + 0.3 RO2 | k = 1.50 × 10−11 | 1.50 × 10−11 |
R25 | HKET = ALD2 + ALDX + CXO3 + XO2H + RO2 | Photolysis | 2.08 × 10−7 |
No. | Reaction | Rate Expression | k298 |
---|---|---|---|
P1 | PAR + OH = XPAR | k = 8.10 × 10−13 | 8.10 × 10−13 |
P2 | ROR = 0.2 KET + 0.42 ACET + 0.74 ALD2 + 0.37 ALDX + 0.04 XO2N + 0.94 XO2H + 0.98 RO2 + 0.02 ROR − 2.7 PAR | k = 5.70 × 1012 exp(−5780/T) | 2.15 × 104 |
P3 | ROR + O2 = KET + HO2 | k = 1.50 × 10−14 exp(−200/T) | 7.67 × 10−15 |
P4 | ROR + NO2 = NTR1 | k = 8.60 × 10−12 exp(400/T) | 3.29 × 10−11 |
P5 | XPAR = XO2N + RO2 | Falloff: F = 0.41; n = 1 k(0) = 4.81 × 10−20 k(inf) = 4.30 × 10−1 (T/298)−8 | 1.49 × 10−1 |
P6 | XPAR = 0.126 ALDX + 0.874 ROR + 0.126 XO2H + 0.874 XO2 + RO2 − 0.126 PAR | k = 1.0 | 1.0 |
Alkane | PAR (1 Carbon) | HPAR (12 Carbons) | IVOC (15 Carbons) | Total Carbon for PAR + HPAR + IVOC |
---|---|---|---|---|
C9 | 6 | 0.25 | 9 | |
C10 | 4 | 0.5 | 10 | |
C11 | 2 | 0.75 | 11 | |
C12 | 1 | 12 | ||
C13 | 0.67 | 0.33 | 13 | |
C14 | 0.33 | 0.67 | 14 |
VCP Species | MIR (Mole O3/mole) | PAR Mapping | PAR MIR (Mole O3/mole) | MIR Ratio (VCP/PAR) |
---|---|---|---|---|
IPOH | 0.778 | 3 | 1.068 | 0.73 |
NPOH | 2.707 | 3 | 1.068 | 2.53 |
EDOH | 2.413 | 2 | 0.712 | 3.39 |
PDOH | 2.508 | 3 | 1.068 | 2.35 |
ROH | 3.506 | 4 | 1.424 | 2.46 |
DME | 0.499 | 2 | 0.712 | 0.70 |
DEE | 3.363 | 4 | 1.424 | 2.36 |
ETHR | 3.735 | 4 | 1.424 | 2.62 |
MEFM | 0.068 | 2 | 0.712 | 0.10 |
ETFM | 0.237 | 3 | 1.068 | 0.22 |
MEAC | 0.119 | 3 | 1.068 | 0.11 |
ETAC | 3.506 | 4 | 1.424 | 2.46 |
ESTR | 1.293 | 4 | 1.424 | 0.91 |
IBTA | 1.091 | 4 | 1.424 | 0.77 |
HPAR | 2.137 | 12 | 4.272 | 0.50 |
HKET | 3.625 | 8 | 2.848 | 1.27 |
SXD5 | 0.828 | 10 | 3.56 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarwood, G.; Tuite, K. Representing Ozone Formation from Volatile Chemical Products (VCP) in Carbon Bond (CB) Chemical Mechanisms. Atmosphere 2024, 15, 178. https://doi.org/10.3390/atmos15020178
Yarwood G, Tuite K. Representing Ozone Formation from Volatile Chemical Products (VCP) in Carbon Bond (CB) Chemical Mechanisms. Atmosphere. 2024; 15(2):178. https://doi.org/10.3390/atmos15020178
Chicago/Turabian StyleYarwood, Greg, and Katie Tuite. 2024. "Representing Ozone Formation from Volatile Chemical Products (VCP) in Carbon Bond (CB) Chemical Mechanisms" Atmosphere 15, no. 2: 178. https://doi.org/10.3390/atmos15020178
APA StyleYarwood, G., & Tuite, K. (2024). Representing Ozone Formation from Volatile Chemical Products (VCP) in Carbon Bond (CB) Chemical Mechanisms. Atmosphere, 15(2), 178. https://doi.org/10.3390/atmos15020178