Identification of Causes of Air Pollution in a Specific Industrial Part of the Czech City of Ostrava in Central Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Sites
2.2. Sampling
2.3. Laboratory Analysis
2.4. Identification of Pollution Sources Depending on Wind Direction and Wind Speed
2.5. Positive Matrix Factorization
3. Results and Discussion
3.1. Identification of Pollution Sources Depending on Wind Direction and Wind Speed
3.2. Identification of Pollution Sources by PMF
3.2.1. Model Contributions to PM10
3.2.2. Model Contributions to Benzo[a]pyrene
3.3. Comparison of Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sokhi, R.; Kitwiroon, N. Air pollution in urban areas. In World Atlas of Atmospheric Pollution; Molina, M., Sokhi, R., Eds.; Anthem Press: London, UK, 2008; pp. 19–34. [Google Scholar] [CrossRef]
- Hime, N.J.; Marks, G.B.; Cowie, C.T. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. Int. J. Environ. Res. Public Health 2018, 15, 1206. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: "Outdoor Air Pollution", Vol. 109. A Review of Human Carcinogens. Lyon, France, 2016. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono109.pdf (accessed on 1 December 2023).
- Koolen, C.D.; Rothenberg, G. Air Pollution in Europe. ChemSusChem 2019, 12, 164–172. [Google Scholar] [CrossRef]
- WHO. Health Effects of Particulate Matter, 2nd ed.; Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia; WHO Regional Office for Europe: Copenhagen, Denmark, 2013; ISBN 978-92-890-0001-7. [Google Scholar]
- WHO. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 2 February 2020).
- Kaleta, D.; Kozielska, B. Spatial and Temporal Volatility of PM2.5, PM10 and PM10-Bound B[a]P Concentrations and Assessment of the Exposure of the Population of Silesia in 2018–2021. Int. J. Environ. Res. Public Health 2023, 20, 138. [Google Scholar] [CrossRef]
- Hůnová, I. Ambient Air Quality in the Czech Republic: Past and Present. Atmosphere 2020, 11, 214, Erratum in Atmosphere 2021, 12, 720. [Google Scholar] [CrossRef]
- CHMI. Air Pollution in the Czech Republic in 2020; Graphical Yearbook (Czech/English); Czech Hydrometeorological Institute: Prague, Czech Republic, 2021. Available online: www.chmi.cz/files/portal/docs/uoco/isko/grafroc/grafroc_CZ.html (accessed on 30 January 2023). Graphical Yearbook (Czech/English).
- Horák, J.; Kuboňová, L.; Krpec, K.; Hopan, F.; Kubesa, P.; Motyka, O.; Laciok, V.; Dej, M.; Ochodek, T.; Plachá, D. PAH emissions from old and new types of domestic hot water boilers. Environ. Pollut. 2017, 225, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hůnová, I.; Kurfürst, P.; Vlasáková, L.; Schreiberová, M.; Škáchová, H. Atmospheric Deposition of Benzo[a]pyrene: Developing a Spatial Pattern at a National Scale. Atmosphere 2022, 13, 712. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Horák, J.; Hopan, F.; Krpec, K. Comparison of emissions of gaseous and particulate pollutants from the combustion of biomass and coal in modern and old-type boilers used for residential heating in the Czech Republic, Central Europe. Chemosphere 2019, 229, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Schreiberová, M.; Vlasáková, L.; Vlček, O.; Šmejdířová, J.; Horálek, J.; Bieser, J. Benzo[a]pyrene in the Ambient Air in the Czech Republic: Emission Sources, Current and Long-Term Monitoring Analysis and Human Exposure. Atmosphere 2020, 11, 955. [Google Scholar] [CrossRef]
- Volná, V.; Hladký, D.; Seibert, R.; Krejčí, B. Transboundary Air Pollution Transport of PM10 and Benzo[a]pyrene in the Czech–Polish Border Region. Atmosphere 2022, 13, 341. [Google Scholar] [CrossRef]
- ČR. Zákon č. 201/2012 Sb. ze dne 2. května 2012 o ochraně ovzduší (Act No. 201/2012 Coll. of 2 May 2012 on air protection); Praha, 2012. pp. 2785–2848. Available online: https://www.mzp.cz/www/platnalegislativa.nsf/%24%24OpenDominoDocument.xsp?documentId=9F4906381B38F7F6C1257A94002EC4A0&action=openDocument (accessed on 20 July 2023). (In Czech).
- EC. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air; EC: Brussel, Belgium, 2005. [Google Scholar]
- EC. The Clean Air Policy Package. 2013. Available online: https://ec.europa.eu/environment/air/clean_air/index.htm (accessed on 30 January 2023).
- Černikovský, L.; Novák, J.; Plachá, H.; Krejčí, B.; Nikolová, I.; Chalupníčková, E.; Conner, T.; Norris, G.; Kovalcik, K.; Olson, D.; et al. The Impact of Select Pollutant Sources on Air Quality for Ostrava and the Moravian-Silesian Metropolitan Region by the Positive Matrix Factorization model. In EAC 2013, PRAGUE Handbook; Czech Aerosol Society (CAS): Prague, Czech Republic; European Aerosol Assembly (EAA): Prague, Czech Republic, 2013. [Google Scholar]
- Kozaková, J.; Pokorná, P.; Vodička, P.; Ondráčková, L.; Ondráček, J.; Křůmal, K.; Mikuška, P.; Hovorka, J.; Moravec, P.; Schwarc, J. The influence of local emissions and regional air pollution transport on a European 837 air pollution hot spot. Environ. Sci. Pollut. Res. 2019, 26, 1675–1692. [Google Scholar] [CrossRef]
- MŽP. Ministry of the Environment of the Czech Republic: Air Quality Improvement Program of Aglomeration Ostrava/Karviná/Frýdek-Místek—CZ08A; Ministry of the Environment of the Czech Republic: Praha, Czech Republic, 2021. (In Czech) [Google Scholar]
- MŽP. Sdělení Odboru Ochrany Ovzduší, Kterým se Stanoví Seznam Stanic Zahrnutých do Státní Sítě Imisního Monitoring (Communication from the Air Protection Department, Which Establishes a List of Stations Included in the national Air Pollution Monitoring Network). Available online: http://portal.chmi.cz/files/portal/docs/uoco/oez/emise/evidence/aktual/Vestnik_2016_1.pdf (accessed on 22 March 2020). (In Czech).
- MŽP. Ministry of the Environment of the Czech Republic: Air Quality Improvement Program of Aglomeration Ostrava/Karviná/Frýdek-Místek—CZ08A; Ministry of the Environment of the Czech Republic: Praha, Czech Republic, 2016. (In Czech) [Google Scholar]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. Positive Matrix Factorization (PMF), Fundamentals and User Guide; U.S. EPA: Washington, DC, USA, 2014. Available online: https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf (accessed on 30 January 2023).
- Belis, C.A.; Pernigotti, D.; Pirovano, G.; Favez, O.; Jaffrezo, J.L.; Kuenen, J.; Denier Van Der Gon, H.; Reizer, M.; Riffault, V.; Alleman, L.Y.; et al. Evaluation of receptor and chemical transport models for PM10 source 879 apportionment. Atmos. Environ. 2020, X5, 100053. [Google Scholar]
- EC. Council Decision 97/101/EC of 27 January 1997 establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member States. Official Journal of the European Communities, 1997. No. L 35/14. EC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1997D0101:20080611:EN:PDF (accessed on 30 January 2023).
- Larssen, S.; Sluyter, R.; Helmis, C. 1999 Criteria for Euroairnet. The EEA Air Quality Monitoring and Information Network. Technical Report no. 12. EEA, Copenhagen. Available online: https://www.eea.europa.eu/publications/TEC12F (accessed on 15 February 2023).
- Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R.M.; Jaffrezo, J.L.; Kiss, G.; Laj, P.; et al. A European aerosol phenomenology-4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe. Atmos. Environ. 2016, 144, 133–145. [Google Scholar] [CrossRef]
- Giannoni, M.; Calzolai, G.; Chiari, M.; Cincinelli, A.; Lucarelli, F.; Martellini, T.; Nava, S. A comparison between thermal-optical transmittance elemental carbon measured by different protocols in PM2.5 samples. Sci. Total Environ. 2016, 571, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.-P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef]
- Iinuma, Y.; Engling, G.; Puxbaum, H.; Herrmann, H. A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol. Atmos. Environ. 2009, 43, 1367–1371. [Google Scholar] [CrossRef]
- Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J.F.; Giannoni, M.; Nava, S. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 417, 128–132. [Google Scholar] [CrossRef]
- WAQI. World Air Quality Index. Available online: https://waqi.info (accessed on 20 February 2023).
- Černikovský, L.; Krejčí, B.; Blažek, Z.; Volná, V. Transboundary Air-Pollution Transport in the Czech-Polish Border Region between the Cities of Ostrava and Katowice. Cent. Eur. J. Public Health 2016, 24, S45–S50. [Google Scholar] [CrossRef]
- Volná, V.; Hladký, D. Detailed Assessment of the Effects of Meteorological Conditions on PM10 Concentrations in the Northeastern Part of the Czech Republic. Atmosphere 2020, 11, 497. Available online: https://www.mdpi.com/2073-4433/11/5/497 (accessed on 29 January 2023). [CrossRef]
- Leoni, C.; Pokorná, P.; Hovorka, J.; Masiol, M.; Topinka, J.; Zhao, Y.; Křůmal, K.; Cliff, S.; Mikuška, P.; Hopke, P.K. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environ. Pollut. 2018, 234, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Pokorná, P.; Hovorka, J.; Klán, M.; Hopke, P.K. Source apportionment of size resolved particulate matter at a European air pollution hot spot. Sci. Total Environ. 2015, 502, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Vossler, T.; Černikovský, L.; Novák, J.; Plachá, H.; Krejčí, B.; Nikolová, I.; Chalupníčková, E.; Williams, R. An investigation of local and regional sources of fine particulate matter in Ostrava, the Czech Republic. Atmos. Pollut. Res. 2015, 6, 454–463. [Google Scholar] [CrossRef]
- Vossler, T.; Černikovský, L.; Novák, J.; Williams, R. Source Apportionment With Uncertainty Estimates of Fine Particulate Matter in Ostrava, Czech Republic Using Positive Matrix Factorization. Atmos. Pollut. Res. 2016, 7, 503–512. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1309104215300477 (accessed on 20 February 2023). [CrossRef]
- Contini, D.; Cesari, D.; Conte, M.; Donateo, A. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Sci. Total Environ. 2016, 560, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Seibert, R.; Nikolová, I.; Volná, V.; Krejčí, B.; Hladký, D. Air Pollution Sources’ Contribution to PM2.5 Concentration in the Northeastern Part of the Czech Republic. Atmosphere 2020, 11, 522. [Google Scholar] [CrossRef]
- Seibert, R.; Nikolová, I.; Volná, V.; Krejčí, B.; Hladký, D. Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia. Environments 2021, 8, 107. [Google Scholar] [CrossRef]
- Dasgupta, P.K.; Campbell, S.W.; Al-Horr, R.S.; Ullah, S.M.R.; Li, J.; Amalfitano, C.; Poor, N.D. Conversion of sea salt aerosol to NaNO3. and the production of HCl: Analysis of temporal behavior of aerosol chloride/nitrate gaseous HCl/HNO3 concentrations with AIM. Atmos. Environ. 2007, 41, 4242–4257. [Google Scholar] [CrossRef]
- López, M.L.; Ceppi, S.; Palancar, G.G.; Olcese, L.E.; Tirao, G.; Toselli, B.M. Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmos. Environ. 2011, 45, 5450–5457. [Google Scholar] [CrossRef]
- EEA. Air Quality in Europe—2019 Report. EEA Technical Report 10/2019; EEA: Copenhagen, Denmark, 2019; ISBN 978-92-9480-088-6. ISSN 1977-8449. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 15 March 2023).
- ETC/ATNI. Benzo(a)pyrene (BaP) Annual Mapping. Evaluation of Its Potential Regular Updating. ETC/ATNI Report 18/2021 2022, European Topic Centre on Air pollution, transport, noise and industrial pollutioc/o NILU–Norwegian Institute for Air Research, Kjeller, Norway, 2022. Available online: https://zenodo.org/records/5898376 (accessed on 15 March 2023).
- Guerreiro, C.B.; Foltescu, V.; De Leeuw, F. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef]
- Mikuška, P.; Křůmal, K.; Večeřa, Z. Characterization of organic compounds in the PM2.5 aerosols in winter in an industrial urban area. Atmos. Environ. 2015, 105, 97–108. [Google Scholar] [CrossRef]
- Aksoyoglu, S.; Ciarelli, G.; El-Haddad, I.; Baltensperger, U.; Prévôt, A.S.H. Secondary inorganic aerosols in Europe: Sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate. Atmos. Chem. Phys. 2017, 17, 7757–7773. [Google Scholar] [CrossRef]
- Megido, L.; Negral, L.; Castrillón, L.; Fernández-Nava, Y.; Suárez-Peña, B.; Marañón, E. Impact of secondary inorganic aerosol and road traffic at a suburban air quality monitoring station. J. Environ. Manag. 2017, 189, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Weijers, E.P.; Sahan, E.; Ten Brink, H.M.; Schaap, M.; Matthijsen, J.; Otjes, R.P.; Van Arkel, F. Contribution of Secondary Inorganic Aerosols to PM10 and PM2.5 in the Netherlands; Measurements and Modelling Results; Netherlands Research Program on Particulate Matter, Report 500099006, measurement and modelling results; AH: Bilthoven, The Netherlands, 2010. [Google Scholar]
- Casotti Rienda, I.; Nunes, T.; Gonçalves, C.; Vicente, A.; Amato, F.; Lucarelli, F.; Kováts, N.; Hubai, K.; Sainnokhoi, T.-A.; Alves, C.A. Road dust resuspension in a coastal Atlantic intermunicipal urban area with industrial facilities: Emission factors, chemical composition and ecotoxicity. Atmos. Res. 2023, 294, 106977. [Google Scholar] [CrossRef]
- Christensen, W.F.; Schauer, J.J. Quantifying and manipulating species influence in positive matrix factorization. Chemom. Intell. Lab. Syst. 2008, 94, 140–148. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Xia, X.; Rattigan, O.V.; Chalupa, D.C.; Utell, M.J. Source apportionment of airborne particulate matter using inorganic and organic species as tracers. Atmos. Environ. 2012, 55, 525–532. [Google Scholar] [CrossRef]
- Amato, F.; Alastuey, A.; de la Rosa, J.; Gonzalez Castanedo, Y.; Sánchez de la Campa, A.M.; Pandolfi, M.; Lozano, A.; Contreras González, J.; Querol, X. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmos. Chem. Phys. 2014, 14, 3533–3544. [Google Scholar] [CrossRef]
Step | Temperature °C | Duration s |
---|---|---|
He1 | 200 | 120 |
He2 | 300 | 150 |
He3 | 450 | 180 |
He4 | 650 | 180 |
He/O21 | 500 | 120 |
He/O22 | 550 | 120 |
He/O23 | 700 | 70 |
He/O24 | 850 | 80 |
Locality | Direction from | Mean PM10 Concentration | Contribution % |
---|---|---|---|
Ostrava–Bartovice (TOBA) | From other directions | 32.0 | 88 |
Ostrava–Bartovice (TOBA) | From the direction of the Liberty | 37.9 | 12 |
Ostrava–Kunčičky (TOKU) | From other directions | 35.7 | 93 |
Ostrava–Kunčičky (TOKU) | From the direction of the Liberty | 47.9 | 7 |
Ostrava–Radvanice (TORE) | From other directions | 43.8 | 43 |
Ostrava–Radvanice (TORE) | From the direction of the Liberty | 70.4 | 57 |
Locality | Direction from | Mean BaP Concentration | Contribution % |
---|---|---|---|
Ostrava–Bartovice (TOBA) | From other directions | 5.3 | 83 |
Ostrava–Bartovice (TOBA) | From the direction of the Liberty | 9.6 | 17 |
Ostrava–Kunčičky (TOKU) | From other directions | 5.4 | 90 |
Ostrava–Kunčičky (TOKU) | From the direction of the Liberty | 10.0 | 10 |
Ostrava–Radvanice (TORE) | From other directions | 11.3 | 33 |
Ostrava–Radvanice (TORE) | From the direction of the Liberty | 28.4 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volná, V.; Seibert, R.; Hladký, D.; Krejčí, B. Identification of Causes of Air Pollution in a Specific Industrial Part of the Czech City of Ostrava in Central Europe. Atmosphere 2024, 15, 177. https://doi.org/10.3390/atmos15020177
Volná V, Seibert R, Hladký D, Krejčí B. Identification of Causes of Air Pollution in a Specific Industrial Part of the Czech City of Ostrava in Central Europe. Atmosphere. 2024; 15(2):177. https://doi.org/10.3390/atmos15020177
Chicago/Turabian StyleVolná, Vladimíra, Radim Seibert, Daniel Hladký, and Blanka Krejčí. 2024. "Identification of Causes of Air Pollution in a Specific Industrial Part of the Czech City of Ostrava in Central Europe" Atmosphere 15, no. 2: 177. https://doi.org/10.3390/atmos15020177
APA StyleVolná, V., Seibert, R., Hladký, D., & Krejčí, B. (2024). Identification of Causes of Air Pollution in a Specific Industrial Part of the Czech City of Ostrava in Central Europe. Atmosphere, 15(2), 177. https://doi.org/10.3390/atmos15020177