Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Harang Reversal Observed in the Inner Magnetosphere by THEMIS in Events 1–2
3.2. Inner-Magnetosphere SAPS and the Hot Zone Observed by THEMIS in Events 1–2
3.3. The Harang Reversal Observed in the Duskside Topside Ionosphere by DMSP in Event 1
3.4. The Harang Reversal Observed in the Topside Ionosphere by DMSP F18 in Event 2
3.5. The SAR Arc Developed Within the SAPS Channel
4. Discussion
5. Summary of New Results
- (1)
- Aligned in the dusk–dawn direction, the inner-magnetosphere Harang region was characterized:
- (a)
- at its earthward edge: by the outward-directed SAPS E field developed on a short timescale in a fast-time voltage generator (VGFT) system across the plasmapause and by the inward-directed convection E field tailward of the plasmapause
- (b)
- at its tailward edge: by the reversal of the convection E field across the closed–open field-line boundary from outward- to inward-directed.
- (2)
- Large-scale FACs reversed:
- (a)
- from ↓R2 to ↑R2 near the plasmapause,
- (b)
- from ↑R2 to ↓R1 across the trapping boundary, and
- (c)
- from ↓R1 to ↑R1 across the closed-open field-line boundary.
- (3)
- Along the discontinuity:
- (a)
- ↑R2 FACs occupied the regime of trapped electrons located between the plasmapause and the trapping boundary, and
- (b)
- ↓R1 FACs occupied the regime of quasi-trapped electrons located between the trapping boundary and the closed-open field-line boundary.
- (4)
- The hot zone developed within the regime of trapped electrons and peaked within the turbulent plasmaspheric boundary layer.
- (i)
- The duskside discontinuity developed because of the flow of ↑R2 from equatorward and ↑R1 from poleward into the auroral oval.
- (ii)
- Across the discontinuity, the electrojet reversal from lower-latitude EEJ to higher-latitude WEJ occurred because of the reversal of the Hall currents from eastward (or antisunward) to westward (or sunward).
- (iii)
- Within the lower-latitude EEJ: the ↓R2–↑R2 FACs connected via the poleward-directed Pedersen currents.
- (iv)
- Within the higher-latitude WEJ: the ↑R1–↓R1 FACs connected via the equatorward-directed Pedersen currents.
- (v)
- Away from the Harang region, in the regular duskside auroral EEJ: the Hall currents were flowing eastward (or antisunward) and the ↓R2–↑R1 FACs connected via the poleward-directed Pedersen currents.
- (vi)
- Located equatorward of the discontinuity, the newly-formed SAPS flow developed in a fast-time voltage generator (VGFT) system where the subauroral ↓R2 FACs were absent.
6. Conclusions
- (a)
- Both the R1 and the R2 FACs were collocated with the M–I conjugate Harang phenomenon and were essential to its development.
- (b)
- In the duskside ionosphere, the Harang Discontinuity was associated with ↑R2 (at lower altitudes) and with ↑R1 (at higher latitudes) and the ↑R2–↑R1 demarcation corresponded to the Harang Discontinuity.
- (c)
- In the Harang region, the reversing EEJ–WEJ developed differently than their respective regular auroral EEJ and WEJ away from the Harang region.
- (d)
- In the topside ionosphere, the newly-formed SAPS flow became enhanced near the Harang region because of the mapped-down large innermagnetosphereoutward-SAPS E field developed at the Harang Region’s earthward edge in a fast-time voltage generator.
- (e)
- Therefore, the ↓R2 FACs were not essential to the enhancement of the newly-formed SAPS flow developed in a fast-time voltage generator at the Harang region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Cowley, S.W.H. Magnetosphere-ionosphere interactions: A tutorial review. In Magnetospheric Current Systems; Ohtani, S., Fujii, R., Hesse, M., Lysak, R.L., Eds.; American Geophysical Union: Washington, DC, USA, 2000; Volume 118, pp. 91–106. [Google Scholar] [CrossRef]
- Iijima, T.; Potemra, T.A. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 1976, 81, 2165–2174. [Google Scholar] [CrossRef]
- Potemra, T.A. Large-Scale Characteristics of Field-Aligned Currents Determined from the Triad Magnetometer Experiment. In Dynamical and Chemical Coupling Between the Neutral and Ionized Atmosphere; Grandal, B., Holtet, J.A., Eds.; Springer: Dordrecht, The Netherlands, 1977; Volume 35. [Google Scholar] [CrossRef]
- Iijima, T.; Potemra, T.A. Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. 1978, 83, 599–615. [Google Scholar] [CrossRef]
- Baumjohann, W. Ionospheric and field-aligned current systems in the auroral zone: A concise review. Adv. Space Res. 1982, 2, 55–62. [Google Scholar] [CrossRef]
- Iijima, T.; Nagata, T. Signatures for substorm development of the growth phase and expansion phase. Planet. Space Sci. 1972, 20, 1095–1112. [Google Scholar] [CrossRef]
- Harang, L. The mean field of disturbance of polar geomagnetic storms. Terr. Magn. Atmos. Electr. 1946, 51, 353–380. [Google Scholar] [CrossRef]
- Heppner, J.P. The Harang Discontinuity in Auroral Belt Ionospheric Currents; Geofysiske Publikasjoner: Oslo, Norway, 1972; Volume 29, pp. 105–120. [Google Scholar]
- Kleimenova, N.G.; Despirak, I.V.; Malysheva, L.M.; Gromova, L.I.; Lubchich, A.A.; Gromov, S.V. Polar substorms and the Harang Discontinuity. In Proceedings of the 46th Annual Seminar Physics of Auroral Phenomena, Apatity, Russia, 13–17 March 2023; pp. 30–33. [Google Scholar] [CrossRef]
- Kleimenova, N.G.; Gromova, L.I.; Gromov, S.V.; Malysheva, L.M.; Despirak, I.V. ‘Polar’ Substorms and the Harang Discontinuity. Geomagn. Aeron. 2024, 64, 490–499. [Google Scholar] [CrossRef]
- Maynard, N.C. Electric field measurements across the Harang discontinuity. J. Geophys. Res. 1974, 79, 4620–4631. [Google Scholar] [CrossRef]
- Koskinen, H.E.J.; Pulkkinen, T.I. Midnight velocity shear zone and the concept of Harang discontinuity. J. Geophys. Res. 1995, 100, 9539–9547. [Google Scholar] [CrossRef]
- Madsen, M.M.; Iversen, I.B.; D′Angelo, N. Measurements of high-latitude ionospheric electric fields by means of balloon-borne sensors. J. Geophys. Res. 1976, 81, 3821–3824. [Google Scholar] [CrossRef]
- Heppner, J.P. Empirical models of high-latitude electric fields. J. Geophys. Res. 1977, 82, 1115–1125. [Google Scholar] [CrossRef]
- McPherron, R.L.; Russell, C.T.; Aubry, M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res. 1973, 78, 3131–3149. [Google Scholar] [CrossRef]
- Kepko, L.; McPherron, R.; Amm, L.O.; Apatenkov, S.; Baumjohann, W.; Birn, J.; Lester, M.; Nakamura, R.; Pulkkinen, T.I.; Sergeev, V. Substorm Current Wedge Revisited. Space Sci. Rev. 2015, 190, 1–46. [Google Scholar] [CrossRef]
- Erickson, G.M.; Spiro, R.W.; Wolf, R.A. The physics of the Harang discontinuity. J. Geophys. Res. 1991, 96, 1633–1645. [Google Scholar] [CrossRef]
- Lezniak, T.; Winckler, J. Experimental study of magnetospheric motions and the acceleration of energetic electrons during substorms. J. Geophys. Res. 1970, 75, 7075–7098. [Google Scholar] [CrossRef]
- Despirak, I.V.; Kozelova, T.; Kozelov, B.V.; Lubchich, A.A. Observations of substorm activity near the Harang Discontinuity. In Proceedings of the Eighteenth international scientific conference “Space, Ecology, Safety” (SES-2022), Sofia, Bulgaria, 19–21 October 2022; Available online: http://space.bas.bg/SES/archive/SES%202022_DOKLADI/1_Space%20Physics/3_Despirak.pdf (accessed on 3 October 2024).
- Kunkel, T.; Untiedt, J.; Baumjohann, W.; Greenwald, R. Electric fields and currents at the Harang discontinuity: A case study. J. Geophys. 1986, 59, 73–86. Available online: https://n2t.net/ark:/88439/y096847 (accessed on 4 October 2024).
- Yang, J.; Toffoletto, F.; Lu, G.; Wiltberger, M. RCM-E and AMIE studies of the Harang reversal formation during a steady magnetospheric convection event. J. Geophys. Res. Space Phys. 2014, 119, 7228–7242. [Google Scholar] [CrossRef]
- Gkioulidou, M.; Wang, C.-P.; Lyons, L.R.; Wolf, R.A. Formation of the Harang reversal and its dependence on plasma sheet conditions: Rice convection model simulations. J. Geophys. Res. 2009, 114, A07204. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, S.; Shepherd, S.G.; Liang, J.; Gjerloev, J.W.; Ruohoniemi, J.M.; Kunduri, B.; Wygant, J.R. Multi-instrument observations of mesoscale enhancement of subauroral polarization stream associated with an injection. J. Geophys. Res. Space Phys. 2019, 124, 1770–1784. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Nicolls, M.J.; Heinselman, C.J.; Mende, S.B. Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. J. Geophys. Res. Space Phys. 2009, 114, A12301. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Wang, C.-P.; Boudouridis, A.; Ruohoniemi, J.M.; Anderson, P.C.; Dyson, P.L.; Devlin, J.C. On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. J. Geophys. Res. 2009, 114, A01205. [Google Scholar] [CrossRef]
- Ohtani, S.; Gkioulidou, M.; Wang, C.-P.; Wolf, R.A. The Harang reversal and the interchange stability of the magnetotail. J. Geophys. Res. Space Phys. 2016, 121, 3278–3292. [Google Scholar] [CrossRef]
- Foster, J.; Burke, W. A new categorization for sub-auroral electric fields. Eos Trans. Am. Geophys. Union 2002, 83, 393–394. [Google Scholar] [CrossRef]
- Foster, J.; Buonsanto, M.; Mendillo, M.; Notingham, D.; Rich, F.; Denig, W. Coordinated stable auroral red arc observations: Relationship to plasma convection. J. Geophys.Res. 1994, 99, 11429–11439. [Google Scholar] [CrossRef]
- Chandra, S.; Maier, E.; Troy, B., Jr.; Narasinga Rao, B. Subauroral red arcs and associated ionospheric phenomena. J. Geophys. Res. 1971, 76, 920–925. [Google Scholar] [CrossRef]
- Bezrukikh, V.V.; Gringauz, K.I. The hot zone in the outer plasmasphere of the earth. J. Atmos. Terr. Phys. 1976, 38, 1085–1091. [Google Scholar] [CrossRef]
- Stephens, G.K.; Sitnov, M.I.; Korth, H.; Tsyganenko, N.A.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A.Y. Global empirical picture of magnetospheric substorms inferred from multimission magnetometer data. J. Geophys. Res. Space Phys. 2019, 124, 1085–1110. [Google Scholar] [CrossRef]
- Connors, M.; Russell, C.T.; Angelopoulos, V. Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: An unprecedented observation. Ann. Geophys. 2011, 29, 619–622. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Nishimura, Y. Mutual evolution of aurora and ionospheric electrodynamic features near the Harang reversal during substorms. Geophys. Monogr. Ser. 2012, 197, 159–169. [Google Scholar] [CrossRef]
- Sinevich, A.A.; Chernyshov, A.A.; Chugunin, D.V.; Clausen, L.B.N.; Miloch, W.J.; Mogilevsky, M.M. Stratified subauroral ion drift (SSAID). J. Geophys. Res. Space Phys. 2023, 128, e2022JA031109. [Google Scholar] [CrossRef]
- Streltsov, A.V.; Mishin, E.V. ULF waves generated near the plasmapause by the magnetosphere-ionosphere interactions. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027353. [Google Scholar] [CrossRef]
- Pradipta, R.; Mishin, E.; Groves, K.M. Storm-time subauroral ionospheric plasma density irregularities and the substorm current wedge. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031465. [Google Scholar] [CrossRef]
- Sibeck, D.G.; Angelopoulos, V. THEMIS science objectives and mission phases. Space Sci. Rev. 2008, 141, 35–59. [Google Scholar] [CrossRef]
- Cosgrove, D.; Frey, S.; Bester, M.; Folta, D.; Woodard, M.; Woodfork, D.; Marchese, J.; Owens, B.; Gandhi, S. Navigating THEMIS to the ARTEMIS Low-Energy Lunar Transfer Trajectory. In Proceedings of the SpaceOps Conferences, Huntsville, AL, USA, 25–30 April 2010; pp. 2010–2352. [Google Scholar] [CrossRef]
- Rich, F.J.; Hairston, M. Large-scale convection patterns observed by DMSP. J. Geophys. Res. 1994, 99, 3827–3844. [Google Scholar] [CrossRef]
- Paxton, L.J.; Morrison, D.; Zhang, Y.; Kil, H.; Wolven, B.; Ogorzalek, B.S.; Humm, D.C.; Meng, C.-I. Validation of Remote Sensing Products Produced by the Special Sensor Ultraviolet Scanning Imager (SSUSI): A far UV-Imaging Spectrograph on DMSP F-16. In Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV; SPIE Press: Bellingham, WA, USA, 2002; p. 4485. [Google Scholar] [CrossRef]
- Gillies, D.M.; Knudsen, D.; Donovan, E.; Jackel, B.; Gillies, R.; Spanswick, E. Identifying the 630 nm auroral arc emission height: A comparison of the triangulation, FAC profile, and electron density methods. J. Geophys. Res. Space Phys. 2017, 122, 8181–8197. [Google Scholar] [CrossRef]
- Newell, P.T.; Gjerloev, J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 2011, 116, A12211. [Google Scholar] [CrossRef]
- Frank, L.A. Relationship of the plasma sheet, ring current, trapping boundary, and plasmapause near the magnetic equator and local midnight. J. Geophys. Res. 1971, 76, 2265–2275. [Google Scholar] [CrossRef]
- Burrows, J.R.; McDiarmid, I.B. Trapped particle boundary regions. In Critical Problems of Magnetospheric Physics; IUCSTP Secretariat, c/o National Academy of Sciences: Washington, DC, USA, 1972; pp. 83–106. [Google Scholar]
- Roederer, J.G. On the adiabatic motion of energetic particles in a model magnetosphere. J. Geophys. Res. 1967, 72, 981–992. [Google Scholar] [CrossRef]
- Roederer, J.G. Dynamics of Geomagnetically Trapped Radiation; Springer: New York, NY, USA, 1970; pp. 58–68. [Google Scholar]
- Mishin, E.V. Interaction of substorm injections with the subauroral geospace: 1. Multispacecraft observations of SAID. J. Geophys. Res. Space Phys. 2013, 118, 5782–5796. [Google Scholar] [CrossRef]
- Mishin, E.V. The evolving paradigm of the subauroral geospace. Front. Astron. Space Sci. 2023, 10, 1118758. [Google Scholar] [CrossRef]
- Mishin, E.V.; Puhl-Quinn, P.A. SAID: Plasmaspheric short circuit of substorm injections. Geophys. Res. Lett. 2007, 34, L24101. [Google Scholar] [CrossRef]
- Mishin, E.; Sotnikov, V. The turbulent plasmasphere boundary layer and the outer radiation belt boundary. Plasma Phys. Control. Fusion 2017, 59, 124003. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Kennel, C.F.; Coroniti, F.V.; Pellat, R.; Kivelson, M.G.; Walker, R.J.; Russell, C.T.; Baumjohann, W.; Feldman, W.C.; Gosling, J.T. Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 1994, 99, 21257–21280. [Google Scholar] [CrossRef]
- Mishin, E.; Streltsov, A. Prebreakup arc intensification due to short circuiting of mesoscale plasma flows over the plasmapause. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027666. [Google Scholar] [CrossRef]
- Smith, P.H.; Hoffman, R.A. Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms. J. Geophys. Res. 1974, 79, 966–971. [Google Scholar] [CrossRef]
- Usanova, M.E.; Mann, I.R.; Kale, Z.C.; Rae, I.J.; Sydora, R.D.; Sandanger, M.; Søraas, F.; Glassmeier, K.-H.; Fornacon, K.-H.; Matsui, H.; et al. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation. J. Geophys. Res. 2010, 115, A07208. [Google Scholar] [CrossRef]
- Mishin, E.; Streltsov, A. Mesoscale and Small-Scale Structure of the Subauroral Geospace. In Ionosphere Dynamics and Applications, Space Physics and Aeronomy Collection—Geophysical Monograph Series 260; Huang, C., Lu, G., Eds.; American Geophysical Union: Washington, DC, USA, 2021; Volume 3, pp. 135–154. [Google Scholar] [CrossRef]
- Serbu, G.P.; Maier, E.J.R. Observations from Ogo 5 of the thermal ion density and temperature within the magnetosphere. J. Geophys. Res. 1970, 75, 6102–6113. [Google Scholar] [CrossRef]
- Nishimura, Y.; Lyons, L.R.; Zou, S.; Angelopoulos, V.; Mende, S.B. Categorization of the time sequence of events leading to substorm onset based on THEMIS all-sky imager observations. In The Dynamic Magnetosphere; Liu, W., Fujimoto, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 133–142. [Google Scholar] [CrossRef]
- Lyons, L.R.; Nishimura, Y.; Liu, J.; Yadav, S.; Zou, Y.; Bristow, W.A.; Donovan, E.; Nishitani, N. Space weather with an arc’s ∼2 h trip across the nightside polar cap. Front. Astron. Space Sci. 2024, 10, 1–7. [Google Scholar] [CrossRef]
- Lyons, L.R. General relations for resonant particle diffusion in pitch angle and energy. J. Plasma Phys. 1974, 12, 45–49. [Google Scholar] [CrossRef]
- Lyons, L.R. Pitch angle and energy diffusion coefficients from resonant interactions with ion cyclotron and whistler waves. J. Plasma Phys. 1974, 12, 417–432. [Google Scholar] [CrossRef]
- Thorne, R.M.; Ni, B.; Tao, X.; Horne, R.B.; Meredith, N.P. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 2010, 467, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Whiter, D.K.; Partamies, N.; Gustavsson, B.; Kauristie, K. The altitude of green OI 557.7 nm and blue N2+ 427.8 nm aurora. Ann. Geophys. 2023, 41, 1–12. [Google Scholar] [CrossRef]
- Mendillo, M.; Baumgardner, J.; Wroten, J.; Martinis, C.; Smith, S.; Merenda, K.D.; Fritz, T.; Hairston, M.; Heelis, R.; Barbieri, C. Imaging magnetospheric boundaries at ionospheric heights. J. Geophys. Res. Space Phys. 2013, 118, 7294–7305. [Google Scholar] [CrossRef]
- Shiokawa, K.; Hosokawa, K.; Sakaguchi, K.; Leda, A.; Otsuka, Y.; Ogawa, T.; Connors, M. The optical mesosphere thermosphere imagers (OMTIs) for network measurements of aurora and airglow, future perspectives of space plasma and particle instrumentation and international collaborations. AIP Conf. Proc. 2009, 1144, 212–215. [Google Scholar] [CrossRef]
- Galperin, Y.I.; Feldstein, Y.I. Mapping of the precipitation region to the plasma sheet. J. Geomagn. Geoelectr. 1996, 48, 857–875. [Google Scholar] [CrossRef]
- Mishin, E.V.; Streltsov, A.V. Toward the unified theory of SAID-linked subauroral arcs. J. Geophys.Res. Space Phys. 2024, 129, e2023JA032196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, I.; Lovell, B.C. Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites. Atmosphere 2024, 15, 1462. https://doi.org/10.3390/atmos15121462
Horvath I, Lovell BC. Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites. Atmosphere. 2024; 15(12):1462. https://doi.org/10.3390/atmos15121462
Chicago/Turabian StyleHorvath, Ildiko, and Brian C. Lovell. 2024. "Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites" Atmosphere 15, no. 12: 1462. https://doi.org/10.3390/atmos15121462
APA StyleHorvath, I., & Lovell, B. C. (2024). Magnetosphere–Ionosphere Conjugate Harang Discontinuity and Sub-Auroral Polarization Streams (SAPS) Phenomena Observed by Multipoint Satellites. Atmosphere, 15(12), 1462. https://doi.org/10.3390/atmos15121462