The Evaluation of Global and Regional Applications of Model for Prediction Across Scales-Atmosphere (MPAS) Against Weather Research Forecast (WRF) Model over California for a Winter (2013 DISCOVER-AQ) and Summer (2016 CABOTS) Episode
Abstract
:1. Introduction
2. MPAS Model and Experimental Setup
3. The Data
4. Results
4.1. Comparison to Observations—January 2013 Winter Episode
4.1.1. Average Horizontal Spatial Distribution
4.1.2. Time Series at Surface Stations
4.1.3. Diurnal Statistics
4.1.4. Rawinsonde Measurements
4.2. Comparison to Observations—July 2016 Summer Episode
4.2.1. Average Horizontal Spatial Distribution
4.2.2. Time Series at Surface Stations
4.2.3. Diurnal Statistics
4.2.4. Rawinsonde Measurements
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avissar, R.; Pielke, R.A. A Parameterization of Heterogeneous Land Surfaces for Atmospheric Numerical Models and Its Impact on Regional Meteorology. Mon. Wea. Rev. 1989, 117, 2113–2136. [Google Scholar] [CrossRef]
- Mahrer, Y.; Pielke, R.A. The Effect of Topography on Sea and Lan Breezes in a Two-Dimensional Numerical Model. Mon. Wea. Rev. 1977, 105, 1151–1162. [Google Scholar] [CrossRef]
- Giovanni, L.; Ferrero, E.; Karl, T.; Rotach, M.W.; Staquet, C.; Castelli, S.T.; Zardi, D. Atmospheric Pollutant Dispersion over Complex Terrain: Challenges and Needs for Improving Air Quality Measurements and Modeling. Atmosphere 2020, 11, 646. [Google Scholar] [CrossRef]
- Lehner, M.; Rotach, M.W. Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain. Atmosphere 2018, 9, 276. [Google Scholar] [CrossRef]
- Klemp, J.B.; Skamarock, W.C.; Fuhrer, O. Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev. 2003, 131, 1229–1239. [Google Scholar] [CrossRef]
- Zangl, G.; Gantner, L.; Hartjenstein, G.; Noppel, H. Numerical Errors Above Steep Topography: A model Intercomparison. Meteorol. Z. 2004, 13, 69–76. [Google Scholar] [CrossRef]
- Cahill, T.A.; Carroll, J.J.; Campbell, D.; Gill, T.E. Air Quality. USGS DDS-43. Final Report to Congress, Vol. II. Chapter 48. Assessments and Scientific Basis for Management Options. 1996, UC-Davis, Center for Water and Wildland Resources. Available online: https://pubs.usgs.gov/dds/dds-43/VOL_II/VII_C48.PDF (accessed on 29 September 2024).
- Cisneros, R.; Brown, P.; Cameron, L.; Gaab, E.; Gonzales, M.; Ramondt, S.; Velos, D.; Song, A.; Schweizer, D. Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California. J. Environ. Pub. Health 2017, 2017, 4535142. [Google Scholar] [CrossRef]
- Kleeman, M.J.; Chen, S.-H.; Harley, R.A. Climate Change Impact on Air Quality in California. Report to California Air Resources Board. Project: 04-349; UC-Davis: Davis, CA, USA, 2010. [Google Scholar]
- Trousdell, J.F.; Conley, S.A.; Post, A.; Faloona, I.C. Observing Entrainment Mixing, Photochemical Ozone Production and Regional Methane Emissions by Aircraft Using a Simple Mixed-Layer Framework. Atmos. Chem. Phys. 2016, 16, 15433–15450. [Google Scholar] [CrossRef]
- Gilliam, R.C.; Herwehe, J.A.; Bullock, O.R., Jr.; Pleim, J.E.; Ran, L.; Campbell, P.; Foroutan, H. Establishing the Suitability of the Model for Prediction Across Scales for Global Retrospective Air Quality Modeling. JGR-Atmos. 2021, 126, e2020JD033588. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF version 3. In NCAR Technical Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. Available online: http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (accessed on 10 March 2021).
- Skamarock, W.C.; Klemp, J.B.; Duda, M.G.; Fowler, L.; Park, S.-H.; Ringler, T.D. A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering. Mon. Wea. Rev. 2012, 140, 3090–3105. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berber, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4. In NCAR Technical Note NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar]
- Heinzeller, D.; Duda, M.G.; Kunstmann, H. Towards Convection-resolving, Global Atmospheric Simulations with the Model for Prediction Across Scales (MPAS) v3.1: An Extreme Scaling Experiment. Geosci. Model Dev. 2016, 9, 77–110. [Google Scholar] [CrossRef]
- Sawamura, P.; Moore, R.H.; Burton, S.P.; Chemyakin, E.; Muller, D.; Kolgotin, A.; Ferrare, R.A.; Hostetler, C.; Ziemba, L.D.; Beyersdorf, A.; et al. HSRL-2 Aerosol Optical Measurements and Microphysical Retrievals vs. Airborne in situ Measurements during DISCOVER-AQ 2013: An Intercomparison Study. Atm. Chem. And Phys. 2017, 17, 7229–7243. [Google Scholar] [CrossRef]
- CABOTS. 2016: California Baseline Ozone Study (CABOTS). Overview. Available online: https://www.esrl.noaa.gov/csd/projects/cabots/overview.pdf (accessed on 15 February 2021).
- CABOTS. 2016: California Baseline Ozone Study (CABOTS). Final Report. Available online: https://www.esrl.noaa.gov/csd/projects/cabots/CABOTSfinalreport15R012.pdf (accessed on 15 February 2021).
- Chen, J.; Yin, D.; Zhao, Z.; Kaduwela, A.P.; Avise, J.C.; Damassa, J.A.; Beyersdorf, A.; Burton, S.; Ferrare, R.; Herman, J.R.; et al. Modeling Air Quality in the San Joaquin Valley of California During the 2013 Discover-AQ Field Campaign. Atmos. Environ. 2020, 5, 100067. [Google Scholar] [CrossRef]
- Pleim, J.E.; Xiu, A. Development of a Land Surface Model. Part II: Data Assimilation. J. Appl. Meteor. Clim. 2003, 42, 1811–1822. [Google Scholar] [CrossRef]
- Gilliam, C.R.; Pleim, J.E. Performance Assessment of New Land Surface and Planetary Boundary Layer Physics in the WRF-ARW. J. Appl. Meteor. Clim. 2010, 49, 760–774. [Google Scholar] [CrossRef]
- Xiu, A.; Pleim, J.E. Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model. J. Appl. Meteor. Clim. 2001, 40, 192–209. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land-Surface/Hydrology Model with the Penn State/NCAR MM5 Modeling System. Part I: Model Description and Implementation. Mon. Wea. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. J. Geoph. Res. 2003, 108, D22. [Google Scholar] [CrossRef]
- Breedt, H.J.; Craig, K.J.; Jothiprakasam, V.D. Monin-Obukhov Similarity Theory and its Application to Wind Flow Modelling Over Complex Terrain. J. Wind Eng. Ind. Aero. 2018, 182, 308–321. [Google Scholar] [CrossRef]
- Hill, R.J. Implications of Monin-Obukhov Similarity Theory for Scalars. J. Atmos. Sci. 1989, 46, 2236–2244. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, S.Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Hu, X.-M.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. J. Appl. Meteor. 2010, 49, 1831–1844. [Google Scholar] [CrossRef]
- Hong, S.-Y.J.; Lim, J.-O. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-K Model for the Longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113, D13. [Google Scholar] [CrossRef]
- Constantinidou, K.; Hadjinicolaou, P.; Zittis, G.; Lelieveld, J. Performance of Land Surface Schemees in the WRF model for Climate Simulations over the MENA-CORDEX Domain. Earth Sys. Environ. 2020, 4, 647–665. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; O’Neill, P.; Islam, T.; Gupta, M.; Dai, Q. Performance Evaluation of WRF-NOAH Land Surface Model Estimated Soil Moisture for Hydrological Application: Synergistic Evaluation Using SMOS Retrieved Soil Moisture. J. Hydrol. 2018, 529, 200–212. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Metzger, E.J.; Smedstad, O.M.; Cummings, J.A.; Halliwell, G.R.; Bleck, R.; Baraille, R.; Wallcraft, A.J.; Lozano, C.; et al. US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 2009, 22, 64–75. [Google Scholar] [CrossRef]
- Bowden, J.H.; Otte, T.L.; Nolte, C.G.; Otte, M.J. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling. J. Clim. 2012, 25, 2805–2823. [Google Scholar] [CrossRef]
- Liu, Y.; Bourgeois, A.; Warner, T.; Swerdlin, S.; Yu, W. An update on “Observation Nudging”-Based FDDA for WRF-ARW: Verification Using OSSES and Performance of Real-time Forecasts. In 2006 WRF User Workshop; National Center for Atmospheric Research: Boulder, CO, USA, 2006. [Google Scholar]
- Deng, A.; Stauffer, D.R.; Dudhia, J.; Otte, T.; Hunter, G.K. Update on Analysis Nudging FDDA in WRF-ARW. In Proceedings of the 8th Annual WRF User’s Workshop NCAR, Boulder, CO, USA, 11–15 June 2007. [Google Scholar]
- Bullock, R., Jr.; Foroutan, H.; Gilliam, R.C.; Herwehe, J.A. Adding Four-Dimensional Data Assimilation by Analysis Nudging to the Model for Prediction Across Scales—Atmosphere (version 4.0). Geosci. Model Dev. 2018, 11, 2897–2922. [Google Scholar] [CrossRef]
- Judt, F. Insights into Atmospheric Predictability through Global Convection- Permitting Model Simulations. J. Atmos. Sci. 2018, 75, 1477–1497. [Google Scholar] [CrossRef]
- Faloona, I.C.; Chiao, S.; Eiserloh, A.J.; Alvarez, R.J., II; Kirgis, G.; Langford, A.O.; Senff, C.J.; Caputi, D.; Hu, A.; Iraci, L.T.; et al. The California Baseline Ozone Transport Study (CABOTS). Bull. Ame. Met. Soc. 2020, 101, E427–E445. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2011; p. 704. [Google Scholar]
- EPA. 2016: Meteorological Model Performance for Annual 2016 Simulation WRF v3.8. 2016. Available online: https://www.epa.gov/sites/default/files/2020-10/documents/met_model_performance-2016_wrf.pdf (accessed on 10 March 2021).
- Beaver, S.; Palazoğlu, A. Influence of Synoptic and Mesoscale Meteorology on Ozone Pollution Potential for San Joaquin Valley of California. Atm. Environ. 2009, 43, 1779–1788. [Google Scholar] [CrossRef]
- Pun, K.B.; Louis, J.-F.; Pai, P.; Seigneur, C.; Altshuler, S.; Franco, G. Ozone Formation in California’s San Joaquin Valley: A Critical Assessment of Modeling and Data Needs. Air Waste Manag. Assoc. 2000, 50, 961–971. [Google Scholar] [CrossRef] [PubMed]
- De Foy, B.; Brune, W.H.; Schauer, J.J. Changes in Ozone Photochemical Regime in Fresno, California from 1994 to 2018 Deduced from Changes in the Weekend Effetc. Environ. Poll. 2020, 263, 114380. [Google Scholar] [CrossRef]
- Du, Q.; Gunzburger, M. Grid Generation and Optimization Based on Centroidal Voronoi Tessellations. App. Math. Comp. 2002, 133, 591–607. [Google Scholar] [CrossRef]
- Gilliam, R.C.; Herwehe, J.; Bullock, R.; Pleim, J.; Wong, D.-C. Preparing MPAS for Global Retrospective Air Quality Modeling: An Evaluation of a 2016 Simulation with Comparions to WRF. In Proceedings of the 2018 CMAS Conference, Chapel Hill, NC, USA, 22–24 October 2018. [Google Scholar]
- Gilliam, R.C.; Bullock, O.; Pleim, J.; Herwehe, J.; Ran, L. Evaluation of the Model for Prediction Across Scales (MPAS) in a Retrospective Application with Comparisons to WRF. In Proceedings of the 2020 AMS Annual Meeting, Boston, MA, USA, 12–16 January 2020. [Google Scholar]
- Hagos, S.; Leung, R.; Rauscher, S.A.; Ringler, T. Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF. Mon. Wea. Rev. 2013, 141, 3022–3036. [Google Scholar] [CrossRef]
- Huang, C.-Y.; You, Z.; Skamarock, W.C.; Hsu, L.-H. Influences of Large-Scale Flow Variations on the Track Evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a Global Variable-Resolution Model. Mon. Wea. Rev. 2017, 145, 1691–1716. [Google Scholar] [CrossRef]
- Kramer, M.; Heinzeller, D.; Hartmann, H.; Berg, W.V.D.; Steeneveld, G.-J. Assessment of MPAS Variable Resolution Simulations in the Grey-Zone of Convection Against WRF Model Results and Observations. Clim. Dyn. 2020, 55, 253–276. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Rajendran, K.; Vijaya Kumar, T.S.V.; Lord, S.; Toth, Z.; Zour, X.; Cocke, S.; Ahlquist, J.E.; Navon, I.M. Improved Skill for Anomaly Correlation of Geopotential Heights at 500 hPa. Mon. Wea. Rev. 2002, 131, 1082–1102. [Google Scholar] [CrossRef]
- Park, S.-H.; Klemp, J.B.; Skamarock, W.C. A Comparison of Mesh Refinement in the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic Wave Simulation. Mon. Wea. Rev. 2014, 142, 3614–3634. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Duda, M.G.; Ha, S.; Park, S.-H. Limited-Area Atmospheric Modeling Using an Unstructured Mesh. Mon. Wea. Rev. 2018, 146, 3445–3460. [Google Scholar] [CrossRef]
- Thuburn, J.; Ringler, T.D.; Skamarock, W.C.; Klemp, J.B. Numerical Representation of Geostrophic Modes on Arbitrarily Structured C-grids. J. Comput. Phys. 2009, 228, 8321–8335. [Google Scholar] [CrossRef]
- Wang, J.; Angell, J.K. Air Stagnation Climatology for the United States (1948–1998); NOAA/Air Resources Laboratory ATLAS No.1.; Air Resources Laboratory, Environmental Research Laboratories, Office of Oceanic and Atmospheric Research: Silver Spring, MD, USA, 1999. [Google Scholar]
- Zaremba, L.L.; Carroll, J.J. Summer Wind Flow Regimes over the Sacramento Valley. J. Appl. Met. 1999, 38, 1463–1473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gürer, K.; Zhao, Z.; Cai, C.; Avise, J.C. The Evaluation of Global and Regional Applications of Model for Prediction Across Scales-Atmosphere (MPAS) Against Weather Research Forecast (WRF) Model over California for a Winter (2013 DISCOVER-AQ) and Summer (2016 CABOTS) Episode. Atmosphere 2024, 15, 1248. https://doi.org/10.3390/atmos15101248
Gürer K, Zhao Z, Cai C, Avise JC. The Evaluation of Global and Regional Applications of Model for Prediction Across Scales-Atmosphere (MPAS) Against Weather Research Forecast (WRF) Model over California for a Winter (2013 DISCOVER-AQ) and Summer (2016 CABOTS) Episode. Atmosphere. 2024; 15(10):1248. https://doi.org/10.3390/atmos15101248
Chicago/Turabian StyleGürer, Kemal, Zhan Zhao, Chenxia Cai, and Jeremy C. Avise. 2024. "The Evaluation of Global and Regional Applications of Model for Prediction Across Scales-Atmosphere (MPAS) Against Weather Research Forecast (WRF) Model over California for a Winter (2013 DISCOVER-AQ) and Summer (2016 CABOTS) Episode" Atmosphere 15, no. 10: 1248. https://doi.org/10.3390/atmos15101248
APA StyleGürer, K., Zhao, Z., Cai, C., & Avise, J. C. (2024). The Evaluation of Global and Regional Applications of Model for Prediction Across Scales-Atmosphere (MPAS) Against Weather Research Forecast (WRF) Model over California for a Winter (2013 DISCOVER-AQ) and Summer (2016 CABOTS) Episode. Atmosphere, 15(10), 1248. https://doi.org/10.3390/atmos15101248