A Method Based on Deep Learning for Severe Convective Weather Forecast: CNN-BiLSTM-AM (Version 1.0)
Abstract
:1. Introduction
2. Data and Methods
2.1. ERA5
2.2. Observational Data
2.3. Deep Learning Method
2.3.1. Training/Testing Sets
2.3.2. CNN-BiLSTM-AM Model
2.4. Experimental Area
2.5. Evaluation Methods
3. Results
3.1. Evaluation of Different DL Models
3.2. Case Evaluation
4. Discussion
4.1. Stability Analysis of the Proposed Models
4.2. The Interpretability Analysis
4.2.1. Technical Method
4.2.2. The Interpretability of ML Models
4.3. Investigation of Reducing the Input Variables
4.4. Evaluation of the Model’s Capabilities across Various Scenarios in Bosten Lake Area
4.5. Possibility of Presenting the Model as a Universal Software Package
5. Conclusions
- (1)
- The CNN-BiLSTM-AM model demonstrates superior capabilities in identifying and interpreting complex nonlinear characteristics associated with severe convective weather systems when compared to traditional DL models such as LSTM, CNN, FC-LSTM, Predrnn++, and ConvLSTM. This results in a notable enhancement in precipitation forecast accuracy, particularly as the forecast lead time increases.
- (2)
- During the flood season, the CNN-BiLSTM-AM consistently outperforms alternative models in terms of root mean square error (RMSE), mean absolute error (MAE), Probability of Detection (POD), Threat Score (TS), and overall accuracy, thereby illustrating its effectiveness in addressing nonlinear challenges and delivering outstanding application results. However, it is noteworthy that the CNN-BiLSTM-AM exhibits a higher False Alarm Rate (FAR) relative to other models, which may suggest that while it accurately predicts precipitation events, it may also incorrectly forecast precipitation in scenarios where none is present.
- (3)
- The analysis of the significance of forecasting variables for severe convective weather reveals that precipitable water (PWAT) is the most critical moisture indicator, significantly surpassing the second-ranked feature. Geographical factors are also pivotal, with longitude (LON) and latitude (LAT) occupying the second and third positions, respectively. Given that temperature variations are fundamental to the causes of convective weather, the 2 m temperature (T) is identified as the fourth most influential factor. The necessity for atmospheric dynamic lifting conditions to promote strong convection positions average vertical velocities (Wmid) in fifth place. While atmospheric energetic conditions do influence severe convective weather, they are not the most critical, with convective available potential energy (CAPE) ranked sixth and the Lifted Index (LI) seventh.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
standardized value | |
input data | |
mean of the input data | |
s | standard deviation of the input data |
h | frequency of instances where both the forecasted events and observed events are present |
m | frequency of occurrences where the observed event is present but not the forecasted event |
f | frequency of cases where the forecasted event is present while the observed event is absent |
c | frequency of events where neither the forecasted nor observed events are present |
S | value predicted |
O | ground observation |
average ground observation | |
average predicted value | |
standard deviation | |
r | correlation coefficient |
VIM | variable importance measures |
Gini index score for the j-th feature | |
Subscripts | |
i | number of samples |
j | Gini index score for the j-th feature |
N | total number of samples used in the study |
Gini | Gini index |
References
- Han, H.; Lee, S.; Im, J.; Kim, M.; Lee, M.; Ahn, M.; Chung, S. Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches. Remote Sens. 2015, 7, 9184–9204. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, K.; Sheng, J.; Lin, Y.; Tian, F.; Tang, W.; Lan, Y.; Zhu, W. Advances in Techniques of Monitoring, Forecasting and Warning of Severe Convective Weather. J. Appl. Meteorol. Sci. 2015, 26, 641–657. [Google Scholar]
- Wang, X.; Mao, W.; Guo, J. Statistics features of strong convection weather disaster in China in 2004 main flood period. J. Nat. Disasters 2007, 16, 27–30. (In Chinese) [Google Scholar]
- Zheng, Y.; Tian, F.; Meng, Z.; Xue, M.; Yao, D.; Bai, L.; Zhou, X.; Mao, X.; Wang, M. Survey and Multi Scale Characteristics of Wind Damage Caused by Convective Storms in the Surrounding Area of the Capsizing Accident of Cruise Ship “Dongfangzhixing”. Meteorol. Mon. 2016, 42, 1–13. (In Chinese) [Google Scholar]
- Zheng, Y.; Zhu, W.; Yao, D.; Meng, Z.; Xue, M.; Zhao, K.; Wu, Z.; Wang, X.; Zheng, Y. Wind Speed Scales and Rating of the Intensity of the 23 June 2016 Tornado in Funing County, Jiangsu Province. Meteorol. Mon. 2016, 42, 1289–1303. (In Chinese) [Google Scholar]
- Gao, Z.; Zhang, J.; Yu, M.; Liu, Z.; Yin, R.; Zhou, S.; Zong, L.; Ning, G.; Xu, X.; Guo, Y. Role of water vapor modulation from multiple pathways in the occurrence of a record-breaking heavy rainfall event in China in 2021. Earth Space Sci. 2022, 9, e2022EA002357. [Google Scholar] [CrossRef]
- Quenum, G.M.L.D.; Arnault, J.; Klutse, N.A.B.; Zhang, Z.; Kunstmann, H.; Oguntunde, P.G. Potential of the Coupled WRF/WRF-Hydro Modeling System for Flood Forecasting in the Ouémé River (West Africa). Water 2022, 14, 1192. [Google Scholar] [CrossRef]
- Varlas, G.; Papadopoulos, A.; Papaioannou, G.; Dimitriou, E. Evaluating the Forecast Skill of a Hydrometeorological Modelling System in Greece. Atmosphere 2021, 12, 902. [Google Scholar] [CrossRef]
- Giannaros, C.; Dafis, S.; Stefanidis, S.; Giannaros, T.M.; Koletsis, I.; Oikonomou, C. Hydrometeorological analysis of a flash flood event in an ungauged Mediterranean watershed under an operational forecasting and monitoring context. Meteorol. Appl. 2022, 29, e2079. [Google Scholar] [CrossRef]
- Kryza, M.; Werner, M.; Waszek, K.; Dore, A.J. Application and evaluation of the WRF model for high-resolution forecasting of rainfall—A case study of SW Poland. Meteorol. Z. 2013, 22, 595–601. [Google Scholar] [CrossRef]
- Hamill, T.M. Performance of Operational Model Precipitation Forecast Guidance during the 2013 Colorado Front-Range Floods. Mon. Weather Rev. 2012, 142, 2609–2618. [Google Scholar] [CrossRef]
- Sela, J.G. Spectral modeling at the National Meteorological Center. Mon. Weather Rev. 1980, 108, 1279–1292. [Google Scholar] [CrossRef]
- Juang, H.M.H. A reduced spectral transform for the NCEP seasonal forecast global spectral atmospheric model. Mon. Weather Rev. 2004, 132, 1019–1035. [Google Scholar] [CrossRef]
- Juang, H.M.H. Mass conserving positive definite semi-Lagrangian advection in NCEP GFS: Decomposition of massively parallel computing without halo. In Proceedings of the 13th Workshop on Use of High Performance Computing in Meteorology, Reading, UK, 3–7 November 2008; ECMWF: Reading, UK, 2008; p. 50. [Google Scholar]
- Eckermann, S. Hybrid σ–p coordinate choices for a global model. Mon. Weather Rev. 2009, 137, 224–245. [Google Scholar] [CrossRef]
- Yang, F. On the negative water vapor in the NCEP GFS: Sources and solution. In Proceedings of the 23rd Conference in Weather Analysis and Forecasting/19th Conference on Numerical Weather Prediction, Omaha, NE, USA, 1–5 June 2009. [Google Scholar]
- Juang, H.M.H. A spectral fully compressible nonhydrostatic mesoscale model in hydrostatic sigma coordinates: Formulation and preliminary results. Meteorol. Atmos. Phys. 1992, 50, 75–88. [Google Scholar] [CrossRef]
- Weisman, M.L.; Skamarock, W.C.; Klemp, J.B. The resolution dependence of explicitly modeled convective systems. Mon. Weather Rev. 1997, 125, 527–548. [Google Scholar] [CrossRef]
- Done, J.; Davis, C.A.; Weisman, M. The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett. 2004, 5, 110–117. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H.W. Scale-selective verification of rainfall accumulations from highresolution forecasts of convective events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Telle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef]
- Stevens, B.; Bony, S. What are climate models missing? Science 2013, 340, 1053–1054. [Google Scholar] [CrossRef]
- McGovern, A.; Elmore, K.L.; Gagne II, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Am. Meteorol. Soc. 2017, 98, 2073–2090. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Li, W.J.; Zhao, F.; Li, M.J.; Chen, L.; Peng, X. Forecasting and Classification of Severe Convective Weather Based on Numerical Forecast and Random Forest Algorithm. Meteorol. Mon. 2018, 44, 49–58. (In Chinese) [Google Scholar]
- Herman, G.R.; Schumacher, R.S. Money Doesn’t Grow on Trees, but Forecasts Do: Forecasting Extreme Precipitation with Random Forests. Mon. Weather Rev. 2018, 146, 1571–1600. [Google Scholar] [CrossRef]
- Liu, N.N.; Liu, C.T.; Tissot, P.E. A Bayesian-Like Approach to Describe the Regional Variation of High-Flash Rate Thunderstorms from Thermodynamic and Kinematic Environment Variables. Geophys. Res. Atmos. 2019, 124, 12507–12522. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural Networks; Arbib, M.A., Ed.; MIT Press: Cambridge, MA, USA, 2019; pp. 255–258. [Google Scholar]
- Szegedy, C.; Toshev, A.; Erhan, D. Deep neural networks for object detection. In Proceedings of the 26th International Conference on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2013; pp. 2553–2561. [Google Scholar]
- Lin, T.Y.; Li, Q.Y.; Geng, Y.A.; Jiang, L. Attention-Based Dual-Source Spatiotemporal Neural Network for Lightning Forecast. IEEE Access 2019, 7, 158296–158307. [Google Scholar] [CrossRef]
- Gope, S.; Sarkar, S.; Mitra, P.; Ghosh, S. Early Prediction of Extreme Rainfall Events: A Deep Learning Approach. In Advances in Data Mining; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef]
- Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-Rosen, Z.; Hu, W.; et al. Learning skillful medium-range global weather forecasting. Science 2023, 382, 1416–1421. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; MuñozSabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Smith, B.T.; Thompson, R.L.; Grams, J.S.; Broyles, C.; Brooks, H.E. Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Weather Forecast. 2012, 27, 1114–1135. [Google Scholar] [CrossRef]
- Brooks, H.E. Severe thunderstorms and climate change. Atmos. Res. 2013, 123, 129–138. [Google Scholar] [CrossRef]
- Madhulatha, A.; Rajeevan, M.; Ratnam, M.V.; Bhate, J.; Naidu, C.V. Nowcasting severe convective activity over Southeast India using ground-based microwave radiometer observations. J. Geophys. Res. 2013, 118, 1–13. [Google Scholar] [CrossRef]
- Gascon, E.; Merino, A.; Sanchez, J.L.; Fernandez-Gonzalez, S.; García-Ortega, E.; Lopez, L.; Hermida, L. Spatial distribution of thermodynamic conditions of severe storms in southwestern Europe. Atmos. Res. 2015, 164, 194–209. [Google Scholar] [CrossRef]
- Púčik, T.; Groenemeijer, P.; Rýva, D.; Kolař, M. Proximity soundings of severe and nonsevere thunderstorms in Central Europe. Mon. Weather Rev. 2015, 143, 4805–4821. [Google Scholar] [CrossRef]
- Gijben, M.; Dyson, L.L.; Loots, M.T. A statistical scheme to forecast the daily lightning threat over southern Africa using the unified model. Atmos. Res. 2017, 194, 78–88. [Google Scholar] [CrossRef]
- Taszarek, M.; Brooks, H.E.; Czernecki, B. Sounding-derived parameters associated with convective hazards in Europe. Mon. Weather Rev. 2017, 145, 1511–1528. [Google Scholar] [CrossRef]
- Ukkonen, P.; Mäkelä, A. Evaluation of machine learning classifiers for predicting deep convection. J. Adv. Model. Earth Syst. 2019, 11, 1784–1802. [Google Scholar] [CrossRef]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef]
- Buda, M.; Maki, A.; Mazurowski, M.A. Systematic study of the class imbalance problem in convolutional neural networks. arXiv 2017, arXiv:1710.05381. [Google Scholar] [CrossRef]
- Lu, W.J.; Li, J.Z.; Wang, J.Y.; Qin, L. A CNN-BiLSTM-AM method for stock price predictiona. Neural Comput. Appl. 2021, 33, 4741–4753. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J.A. A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Perol, T.; Gharbi, M.; Denolle, M. Convolutional Neural Network for Earthquake Detection and Location. Sci. Adv. 2017, 4, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Wang, Y.; Wu, H.; Zhang, J.; Gao, Z.; Wang, J.; Yu, P.S.; Long, M. PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 2208–2225. [Google Scholar] [CrossRef]
- Zhou, K.H.; Zheng, Y.G.; Li, B.; Dong, W.S.; Zhang, X.L. Forecasting different types of convective weather: A deep learning approach. J. Meteorol. Res. 2019, 33, 797–809. [Google Scholar] [CrossRef]
- Kim, S.; Hong, S.; Joh, M.; Song, S.K. DEEPRAIN: ConvLSTM network for precipitation prediction using multichannel radar data. In Proceedings of the 7th International Workshop on Climate Informatics, National Center for Atmospheric Research, Boulder, CO, USA, 19–22 September 2017. [Google Scholar]
- Akbari Asanjan, A.; Yang, T.; Hsu, K.; Sorooshian, S.; Lin, J.; Peng, Q. Short-Term Precipitation Forecast Based on the PERSIANN System and LSTM Recurrent Neural Networks. J. Geophys. Res. Atmos. 2018, 123, 12–543. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4 (Vol. 145); National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- McGovern, A.; Lagerquist, R.; Gagne, D.J., II.; Jergensen, G.E.; Elmore, K.L.; Homeyer, C.R.; Smith, T. Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Am. Meteorol. Soc. 2019, 100, 2175–2199. [Google Scholar] [CrossRef]
- Tian, F.; Zheng, Y.; Zhang, T.; Zhang, X.; Mao, D.; Sun, J.; Zhao, S. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China. Meteorol. Res. 2015, 29, 370–384. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.M. Analysis on Mesoscale Impact System and Atmospheric Vertical Structure of Two Types of Heavy Rains in Urumqi. Plateau Meteorol. 2020, 39, 774–787. [Google Scholar]
- Zhang, F.; Li, G.; Luo, X. Some Influence Factors of a Sudden Rainstorm Event in Northeast Sichuan Basin of China. Plateau Meteorol. 2020, 39, 321–332. [Google Scholar]
- Zhang, J.; Gao, Z.; Yang, J.; Li, Y.; Jiang, Y. Research and Numerical Simulation of Rainstorm over Bosten Lake Area based on WRF Model. Plateau Meteorol. 2022, 41, 887–895. [Google Scholar]
Group | Abbreviation | Parameter Name |
---|---|---|
Thermodynamic instability parameters | LI CAPE CIN LR DACPE DCI SP WBZ | Lifted index Convective available potential energy Convective inhibition Temperature lapse rate at different levels Downdraft convective available energy Deep convective index Surface pressure Wet bulb zero |
Kinematic parameters | Shear3 km Shear1 km WMAX Wmid | Bulk wind shear Bulk wind shear Maximum potential speed of an updraft Mean of the vertical velocities |
Humidity parameters | Td850 PWAT MRH HI | Dew point temperature at 850 hPa Precipitable water Mean relative humidity Humidity index |
Thermodynamic parameters | T | 2 m temperature |
Composites | EHI | Energy–Helicity index |
Other | LON | Longitude |
LAT | Latitude |
Forecast Duration | POD | FAR | TS | ||
---|---|---|---|---|---|
CNN-BiLSTM-AM | 1 h | 0.586 | 0.395 | 0.462 | 0.493 |
2 h | 0.498 | 0.444 | 0.433 | 0.452 | |
3 h | 0.445 | 0.461 | 0.372 | 0.381 | |
4 h | 0.423 | 0.491 | 0.323 | 0.344 | |
5 h | 0.411 | 0.542 | 0.301 | 0.313 | |
6 h | 0.382 | 0.613 | 0.222 | 0.231 | |
Predrnn++ | 1 h | 0.544 | 0.412 | 0.451 | 0.459 |
2 h | 0.402 | 0.465 | 0.313 | 0.326 | |
3 h | 0.364 | 0.481 | 0.242 | 0.273 | |
4 h | 0.315 | 0.521 | 0.190 | 0.203 | |
5 h | 0.302 | 0.591 | 0.161 | 0.185 | |
6 h | 0.283 | 0.635 | 0.122 | 0.165 | |
ConvLSTM | 1 h | 0.554 | 0.411 | 0.453 | 0.459 |
2 h | 0.430 | 0.452 | 0.335 | 0.389 | |
3 h | 0.379 | 0.481 | 0.303 | 0.327 | |
4 h | 0.358 | 0.510 | 0.263 | 0.281 | |
5 h | 0.322 | 0.583 | 0.195 | 0.242 | |
6 h | 0.293 | 0.622 | 0.133 | 0.176 | |
CNN | 1 h | 0.534 | 0.422 | 0.431 | 0.443 |
2 h | 0.394 | 0.481 | 0.263 | 0.282 | |
3 h | 0.357 | 0.503 | 0.220 | 0.237 | |
4 h | 0.309 | 0.531 | 0.185 | 0.191 | |
5 h | 0.276 | 0.593 | 0.172 | 0.181 | |
6 h | 0.223 | 0.642 | 0.125 | 0.133 | |
FC-LSTM | 1 h | 0.480 | 0.436 | 0.425 | 0.432 |
2 h | 0.373 | 0.496 | 0.245 | 0.259 | |
3 h | 0.332 | 0.513 | 0.216 | 0.224 | |
4 h | 0.303 | 0.536 | 0.175 | 0.184 | |
5 h | 0.240 | 0.612 | 0.142 | 0.150 | |
6 h | 0.215 | 0.653 | 0.116 | 0.131 | |
LSTM | 1 h | 0.433 | 0.452 | 0.421 | 0.423 |
2 h | 0.356 | 0.503 | 0.225 | 0.237 | |
3 h | 0.313 | 0.524 | 0.204 | 0.219 | |
4 h | 0.297 | 0.595 | 0.170 | 0.188 | |
5 h | 0.224 | 0.620 | 0.125 | 0.142 | |
6 h | 0.206 | 0.675 | 0.116 | 0.129 |
Physical Process | Scheme Selection |
---|---|
Cloud microphysical process scheme | Thompson |
Near-ground level scheme | Monin-Obukhov |
Land surface process scheme | Noah |
Boundary layer scheme | YSU |
Shortwave radiation scheme | Dudhia |
Long-wave radiation scheme | RRTM |
Cumulus convection scheme | Kain Fritsch |
Cloud microphysical process scheme | Thompson |
Factors Eliminated | RMSE |
---|---|
Wmid | 11.43 (+0.32) |
T | 11.57 (+0.46) |
LAT | 11.38 (+0.17) |
LON | 11.70 (+0.59) |
PWAT | 13.09 (+1.98) |
SCW | Year | POD (DL) | POD (HF) | (DL) | TS (HF) |
---|---|---|---|---|---|
Short-term heavy precipitation | 2020 | 0.545 | 0.426 | 0.465 | 0.403 |
2021 | 0.532 | 0.401 | 0.453 | 0.392 | |
2022 | 0.501 | 0.411 | 0.472 | 0.407 | |
Thunderstorm | 2020 | 0.522 | 0.412 | 0.460 | 0.405 |
2021 | 0.511 | 0.405 | 0.419 | 0.401 | |
2022 | 0.536 | 0.481 | 0.442 | 0.391 | |
Hailstorm | 2020 | 0.513 | 0.431 | 0.451 | 0.402 |
2021 | 0.509 | 0.452 | 0.435 | 0.389 | |
2022 | 0.535 | 0.451 | 0.441 | 0.387 | |
Strong gust | 2020 | 0.492 | 0.422 | 0.430 | 0.383 |
2021 | 0.476 | 0.433 | 0.468 | 0.402 | |
2022 | 0.483 | 0.442 | 0.455 | 0.395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yin, M.; Wang, P.; Gao, Z. A Method Based on Deep Learning for Severe Convective Weather Forecast: CNN-BiLSTM-AM (Version 1.0). Atmosphere 2024, 15, 1229. https://doi.org/10.3390/atmos15101229
Zhang J, Yin M, Wang P, Gao Z. A Method Based on Deep Learning for Severe Convective Weather Forecast: CNN-BiLSTM-AM (Version 1.0). Atmosphere. 2024; 15(10):1229. https://doi.org/10.3390/atmos15101229
Chicago/Turabian StyleZhang, Jianbin, Meng Yin, Pu Wang, and Zhiqiu Gao. 2024. "A Method Based on Deep Learning for Severe Convective Weather Forecast: CNN-BiLSTM-AM (Version 1.0)" Atmosphere 15, no. 10: 1229. https://doi.org/10.3390/atmos15101229
APA StyleZhang, J., Yin, M., Wang, P., & Gao, Z. (2024). A Method Based on Deep Learning for Severe Convective Weather Forecast: CNN-BiLSTM-AM (Version 1.0). Atmosphere, 15(10), 1229. https://doi.org/10.3390/atmos15101229