On the Possible Climatic Consequences of the Large Oil Spills in Oceans
Abstract
:1. Introduction
2. Study Methodology
3. Results
3.1. Temperature Anomalies in the Northern Atlantic near the Icelandic Depression
3.2. The Course of the North Atlantic Oscillation (NAO) Indices
3.3. Climatic Consequences in Europe and Canada
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- World Health Organization. Climate Change. Available online: https://www.who.int/health-topics/climate-change#tab=tab_1 (accessed on 18 March 2023).
- Valiulis, A.; Bousquet, J.; Veryga, A.; Suprun, U.; Sergeenko, D.; Cebotari, S.; Borelli, D.; Pietikainen, S.; Banys, J.; Agache, I.; et al. Vilnius declaration on chronic respiratory diseases: Multisectoral care pathways embedding guided self-management, mHealth and air pollution in chronic respiratory diseases. Clin. Transl. Allergy 2019, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Gobler, C.J. Climate Change and Harmful Algal Blooms: Insights and Perspective. Harmful Algae 2020, 91, 101731. [Google Scholar] [CrossRef] [PubMed]
- Al Fartoosi, F.M. The Impact of Maritime Oil Pollution in the Marine Environment: Case Study of Maritime Oil Pollution in the Navigational Channel of Shatt Al-Arab. Master’s Thesis, World Maritime University, Malmö, Sweden, 2013; p. 318. Available online: https://commons.wmu.se/cgi/viewcontent.cgi?params=/context/all_dissertations/article/1317/&path_info=MSEA_2013_AL_FARTOOSI.pdf (accessed on 4 October 2024).
- Tarasiuk, N.; Stelingis, K.; Gudelis, A. The water bodies surface self-cleaning mechanisms after the Chernobyl accident. Atmos. Phys. 1989, 14, 67–79. (In Russian) [Google Scholar]
- King, H.M. World’s Largest Oil Spills Map. Available online: https://geology.com/articles/largest-oil-spills-map (accessed on 3 September 2024).
- Aeppli, C.; Reddy, C.M.; Nelson, R.K.; Kellermann, M.Y.; Valentine, D.L. Recurrent oil sheens at the deepwater horizon disaster site fingerprinted with synthetic hydrocarbon drilling fluids. Environ. Sci. Technol. 2013, 47, 8211–8219. [Google Scholar] [CrossRef]
- Aljazeera. BP Settles While Macondo “Seeps”. 2012. Available online: https://www.aljazeera.com/features/2012/3/4/bp-settles-while-macondo-seeps (accessed on 9 February 2023).
- Zodiatis, G.; Lardner, R.; Alves, T.M.; Krestenitis, Y.; Perivoliotis, L.; Sofianos, S.; Spanoudaki, K. Oil spill forecasting (prediction). J. Mar. Res. 2017, 75, 923–953. [Google Scholar] [CrossRef]
- Ash, P.A.; Bain, C.D.; Matsubara, H. Wetting in oil/water/surfactant systems. Curr. Opin. Colloid Interface Sci. 2012, 17, 196–204. [Google Scholar] [CrossRef]
- Schilling, K.; Zessner, M. Foam in the aquatic environment. Water Res. 2011, 45, 4355–4366. [Google Scholar] [CrossRef]
- BBC News. Sea Foam Swamps Cars at Seaside Resort of Cleveleys. 2011. Available online: https://www.bbc.com/news/av/uk-england-lancashire-16354575 (accessed on 12 November 2022).
- BBC News. Foam Swept in as Gales Hit Scotland. 2012. Available online: https://www.bbc.com/news/uk-scotland-north-east-orkney-shetland-19716141 (accessed on 12 November 2022).
- BBC News. Sea Foam Chaos in Coastal Town. 2015. Available online: https://www.bbc.com/news/av/uk-34813623 (accessed on 12 November 2022).
- Davuliene, L.; Jasineviciene, D.; Garbariene, I.; Andriejauskiene, J.; Ulevicius, V.; Bycenkiene, S. Long-term air pollution trend analysis in the South-eastern Baltic region, 1981–2017. Atmos. Res. 2021, 247, 105191. [Google Scholar] [CrossRef]
- Ferrero, L.; Sangiorgi, G.; Perrone, M.G.; Rizzi, C.; Cataldi, M.; Markuszewski, P.; Pakszys, P.; Makuch, P.; Petelski, T.; Becagli, S.; et al. Chemical composition of aerosol over the Arctic Ocean from summer arctic expedition (AREX) 2011–2012 Cruises: Ions, amines, elemental carbon, organic matter, polycyclic aromatic hydrocarbons, n-alkanes, metals, and rare earth elements. Atmosphere 2019, 10, 54. [Google Scholar] [CrossRef]
- North Atlantic Oscillation (NAO). NAO Index Calculation. Available online: http://la.climatologie.free.fr/nao/NAO-english.htm#nao (accessed on 1 October 2024).
- Rogers, J.C. The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Weather. Rev. 1984, 112, 1999–2015. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Monthly Global Sea Surface Temperature Plot Archive. (These Data Were Discontinued in 2020. The Original Data Can Be Provided on Request). Available online: https://www.emc.ncep.noaa.gov (accessed on 10 January 2020).
- Monthly Sea Surface Temperature (NOAA Optimum Interpolation SST (OISST) Version 2.1). Available online: https://iridl.ldeo.columbia.edu/maproom/Global/Ocean_Temp/Monthly_Temp.html?T=Jun%202009#tabs-2 (accessed on 1 October 2024).
- National Oceanic and Atmospheric Administration (NOAA). North Atlantic Oscillation (NAO). Available online: https://origin.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml (accessed on 26 December 2022).
- TuTiempo. Climate Data. Available online: https://en.tutiempo.net/ (accessed on 16 December 2022).
- What Is the Gulf Stream? Available online: https://scijinks.gov/gulf-stream/ (accessed on 1 October 2024).
- Wang, W.; Anderson, B.T.; Kaufmann, R.K.; Myneni, R.B. The relation between the North Atlantic oscillation and SSTs in the North Atlantic Basin. J. Clim. 2004, 17, 4752–4759. [Google Scholar] [CrossRef]
- Lindsey, R.; Dahlman, L. Climate Variability: North Atlantic Oscillation. National Oceanic and Atmospheric Administration (NOAA), 2009. Available online: https://www.climate.gov/news-features/understanding-climate/climate-variability-north-atlantic-oscillation (accessed on 7 March 2023).
- Stommel, H. The Gulf Stream: A Physical and Dynamical Description; Cambridge University Press: London, UK, 1965; p. 248. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). Sea Surface Temperature Anomaly. (These Data Were Discontinued in 2020. The Original Data Can Be Provided on Request). Available online: https://www.emc.ncep.noaa.gov (accessed on 10 January 2020).
- International Tanker Owners Pollution Federation (ITOPF). Oil Tanker Spill Statistics 2002. Available online: https://www.itopf.org/in-action/case-studies/prestige-spain-france-2002/ (accessed on 7 November 2022).
- Carpenter, A. Oil pollution in the North Sea: The impact of governance measures on oil pollution over several decades. Hydrobiologia 2019, 845, 109–127. [Google Scholar] [CrossRef]
- Nesterov, E.S. East Atlantic oscillation of the atmospheric circulation. Russ. Meteorol. Hydrol. 2009, 34, 794–800. [Google Scholar] [CrossRef]
- Mikhailova, N.V.; Yurovsky, A.V. The East Atlantic Oscillation: Mechanism and Impact on the European Climate in Winter. Phys. Oceanogr. 2016, 4, 27–36. [Google Scholar] [CrossRef]
- Bauer, J. Climate Change Is Weakening the Ocean’s Currents. Here’s Why That Matters. 2019. Thompson Earth Systems Institute. Available online: https://www.floridamuseum.ufl.edu/earth-systems/blog/climate-change-is-weakening-the-oceans-currents-heres-why-that-matters/ (accessed on 12 November 2022).
- Timmermans, M.-L.; Marshall, J. Understanding Arctic Ocean Circulation: A Review of Ocean Dynamics in a Changing Climate. JGR Ocean. 2020, 125, e2018JC014378. [Google Scholar] [CrossRef]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A sudden stratospheric warming compendium. Earth Syst Sci Data 2017, 9, 63–76. [Google Scholar] [CrossRef]
- Fereday, D.; Maidens, A.; Arribas, A.; Scaife, A.A.; Knight, J.R. Seasonal Forecasts of Northern Hemisphere Winter 2009/10. Environ. Res. Lett. 2012, 7, 034031. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q. Analysis of the variations in the strength and position of stratospheric sudden warming in the past three decades. Atmos. Ocean. Sci. Lett. 2019, 12, 147–154. [Google Scholar] [CrossRef]
- Lujanas, V. Cosmogenic Radionuclides in the Atmosphere; Mokslas: Vilnius, Lithuania, 1979; p. 179. (In Russian) [Google Scholar]
- Jaiser, R.; Dethloff, K.; Handorf, D.; Rinke, A.; Cohen, J. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A Dyn. Meteorol. Oceanogr. 2012, 64, 11595. [Google Scholar] [CrossRef]
- Tanaka, K.R.; Van Houtan, K.S. The recent normalization of historical marine heat extremes. PLoS Clim. 2022, 1, e0000007. [Google Scholar] [CrossRef]
- Zhu, S.; Luo, Y.; Ptak, M.; Sojka, M.; Ji, Q.; Choinski, A.; Kuang, M. A hybrid model for the forecasting of sea surface water temperature using the information of air temperature: A case study of the Baltic Sea. All Earth 2022, 34, 27–38. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). CoastWach Data Portal. Chlorophyll-a Anomaly. Available online: https://coastwatch.noaa.gov/cw_html/cwViewer.html# (accessed on 12 November 2022).
- Buckley, M.W.; DelSole, T.; Susan Lozier, M.; Li, L. Predictability of North Atlantic Sea surface temperature and upper-ocean heat content. J. Clim. 2019, 32, 3005–3023. [Google Scholar] [CrossRef]
Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. (Σ °C) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1995 | 5.8 | 5.1 | 5.1 | 4.8 | 6.0 | 8.0 | 8.6 | 9.7 | 9.7 | 7.8 | 6.8 | 6.2 (83.6) |
1996 | 6.0 | 5.8 | 5.5 | 6.0 | 7.4 | 9.2 | 10.9 | 11.0 | 10.2 | 8.8 | 7.2 | 6.6 (94.6) |
1997 | 6.2 | 5.6 | 5.3 | 5.8 | 6.9 | 8.7 | 10.9 | 11.8 | 10.1 | 11.8 | 7.9 | 7.8 (95.8) |
1998 | 7.0 | 6.4 | 5.7 | 5.8 | 6.9 | 9.8 | 11.0 | 11.0 | 10.2 | 8.9 | 7.7 | 6.9 (97.3) |
1999 | 6.7 | 5.9 | 5.9 | 6.2 | 7.1 | 8.9 | 10.2 | 11.8 | 9.9 | 8.8 | 7.8 | 6.9 (96.1) |
2000 | 6.4 | 5.9 | 5.5 | 5.6 | 6.5 | 8.8 | 11 | 11.9 | 11.3 | 9.2 | 7.6 | 6.9 (96.6) |
2001 | 6.3 | 6.2 | 6.0 | 6.1 | 6.7 | 7.7 | 10.1 | 11.8 | 10.8 | 9.7 | 7.9 | 7.1 (100.2) |
2002 | 6.6 | 6.0 | 5.7 | 6.1 | 6.7 | 9.0 | 10.0 | 10.5 | 9.9 | 9.1 | 8.3 | 7.8 (95.7) |
2003 | 7.2 | 6.7 | 6.7 | 6.9 | 7.9 | 10.0 | 11.9 | 12.8 | 11.3 | 9.5 | 8.6 | 7.7 (107.2) |
2004 | 6.8 | 6.3 | 6.5 | 6.7 | 7.5 | 9.8 | 11.3 | 12.0 | 11.3 | 9.7 | 8.2 | 7.5 (103.6) |
2005 | 6.6 | 6.3 | 6.0 | 6.7 | 7.3 | 9.0 | 11.0 | 11.9 | 10.1 | 8.3 | 7.5 | 7.1 (97.8) |
2006 | 6.7 | 6.3 | 6.2 | 5.9 | 7.4 | 8.7 | 10.7 | 11.7 | 11.0 | 9.5 | 7.6 | 7.0 (98.7) |
2007 | 6.5 | 6.4 | 6.1 | 6.3 | 7.3 | 9.9 | 11.2 | 11.9 | 10.4 | 8.9 | 7.8 | 7.4 (100.1) |
2008 | 6.9 | 6.5 | 6.0 | 6.9 | 7.5 | 9.4 | 11.7 | 12 | 10.2 | 8.4 | 7.7 | 7.2 (100.3) |
2009 | 6.7 | 6.5 | 6.1 | 6.1 | 7.6 | 10 | 11.9 | 12.0 | 10.7 | 9.1 | 8.1 | 7.7 (102.5) |
2010 | 7.0 | 6.7 | 6.7 | 6.6 | 7.9 | 10.2 | 12 | 13 | 12 | 10.4 | 9 | 7.8 (109.3) |
2011 | 6.8 | 6.7 | 6.2 | 6.5 | 7.4 | 8.8 | 11.2 | 11.4 | 11 | 9.7 | 8.4 | 7.7 (101.8) |
2012 | 6.7 | 6.5 | 6.3 | 6.6 | 7.7 | 10.5 | 13 | 12.9 | 10.7 | 9.0 | 7.7 | 7.4 (104) |
2013 | 6.9 | 6.8 | 6.7 | 6.8 | 7.2 | 9.2 | 10.2 | 11 | 9.9 | 8.9 | 7.8 | 6.9 (98.3) |
2014 | 6.6 | 6.7 | 6.4 | 6.5 | 8.2 | 10.9 | 11.3 | 11.7 | 10.9 | 9.3 | 8.4 | 7.4 (104.3) |
2015 | 6.5 | 5.8 | 5.7 | 5.8 | 6.4 | 8.1 | 10 | 10.9 | 10.1 | 9.3 | 8 | 6.9 (93.5) |
2016 | 6.4 | 6.1 | 5.9 | 6.3 | 7.1 | 9.3 | 11.2 | 12.7 | 11.8 | 9.4 | 8.4 | 7.4 (102) |
2017 | 6.5 | 6.1 | 5.8 | 6.2 | 7.6 | 9.2 | 11.1 | 11.9 | 11.7 | 9.8 | 8.4 | 7.0 (101.3) |
2018 | 6.5 | 5.7 | 5.7 | 6.1 | 7.4 | 8.6 | 9.9 | 10.9 | 9.9 | 8.8 | 7.6 | 7.1 (94.2) |
2019 | 6.7 | 5.7 | 5.7 | 6.1 | 7.8 | 9.8 | 11.8 | 11.8 | 10.6 | 9.5 | 8.4 | 7.6 (101.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokopciuk, N.; Tarasiuk, N.; Franck, U.; Schraufnagel, D.E.; Valiulis, A.; Kostantinova, M.; Zielinski, T.; Valiulis, A. On the Possible Climatic Consequences of the Large Oil Spills in Oceans. Atmosphere 2024, 15, 1216. https://doi.org/10.3390/atmos15101216
Prokopciuk N, Tarasiuk N, Franck U, Schraufnagel DE, Valiulis A, Kostantinova M, Zielinski T, Valiulis A. On the Possible Climatic Consequences of the Large Oil Spills in Oceans. Atmosphere. 2024; 15(10):1216. https://doi.org/10.3390/atmos15101216
Chicago/Turabian StyleProkopciuk, Nina, Nikolaj Tarasiuk, Ulrich Franck, Dean Ernest Schraufnagel, Algirdas Valiulis, Marina Kostantinova, Tymon Zielinski, and Arunas Valiulis. 2024. "On the Possible Climatic Consequences of the Large Oil Spills in Oceans" Atmosphere 15, no. 10: 1216. https://doi.org/10.3390/atmos15101216
APA StyleProkopciuk, N., Tarasiuk, N., Franck, U., Schraufnagel, D. E., Valiulis, A., Kostantinova, M., Zielinski, T., & Valiulis, A. (2024). On the Possible Climatic Consequences of the Large Oil Spills in Oceans. Atmosphere, 15(10), 1216. https://doi.org/10.3390/atmos15101216