Monitoring of Airborne Pollen: A Patent Review
Abstract
:1. Introduction
2. Methodology
2.1. Patent Review Article Search Methodology
2.2. Data Sources and Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection
2.5. Data Extraction
3. Results
3.1. Patent Analysis
3.2. Patent Summary
3.2.1. Patent EP1408321B1, Europe, 2003
3.2.2. Patent TW200804801A, Taiwan, 2006
3.2.3. Patent WO2008063192A1, International, 2006
3.2.4. Patent US8492172B2, United States, 2013
3.2.5. Patent US20150355084A1, United States, 2013
3.2.6. Patent CN105388093B, China, 2015
3.2.7. Patent EP3605059A1, Europe, 2018
3.2.8. Patent US11698331B1, United States, 2020
3.2.9. Patent US11946850B2, United States, 2020
3.2.10. Patent EP3605059A1, Europe, 2020
3.2.11. Patent CA3183076A1, Canada, 2021
3.2.12. Patent US11490852B1, United States, 2021
3.2.13. Patent JP7518413B2, Japan, 2022
3.2.14. Patent WO2023110716A1, International, 2022
3.2.15. Patent US20230358661A1, United States, 2023
4. Discussion
4.1. Light-Scattering Sensors
4.2. Protein Binding-Based Sensor
4.3. Cameras and Image Sensors
4.4. Real-Time Monitoring
4.5. Artificial Intelligence
4.6. Additional Technological Aspects
4.7. Findings and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollen. Available online: https://www.niehs.nih.gov/health/topics/agents/allergens/pollen (accessed on 17 September 2024).
- Pollen Allergy. Available online: https://aafa.org/allergies/types-of-allergies/pollen-allergy/ (accessed on 17 September 2024).
- Allergens: Pollen. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/seasonal-allergies/allergens-pollen (accessed on 17 September 2024).
- Mampage, C.B.A.; Hughes, D.D.; Jones, L.M.; Metwali, N.; Thorne, P.S.; Stone, E.A. Characterization of Sub-Pollen Particles in Size-Resolved Atmospheric Aerosol Using Chemical Tracers. Atmos. Environ. X 2022, 15, 100177. [Google Scholar] [CrossRef] [PubMed]
- Ambulatory Medical Care Utilization Estimates for 2007. Available online: https://www.cdc.gov/nchs/data/series/sr_13/sr13_169.pdf (accessed on 17 September 2024).
- Venkatesan, S.; Zare, A.; Stevanovic, S. Pollen and Sub-Pollen Particles: External Interactions Shaping the Allergic Potential of Pollen. Sci. Total Environ. 2024, 926, 171593. [Google Scholar] [CrossRef]
- Hughes, D.D.; Mampage, C.B.A.; Jones, L.M.; Liu, Z.; Stone, E.A. Characterization of Atmospheric Pollen Fragments during Springtime Thunderstorms. Environ. Sci. Technol. Lett. 2020, 7, 409–414. [Google Scholar] [CrossRef]
- World Health Organization. Who Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021; p. 2. [Google Scholar]
- Air Pollution Kills 13 People Every Minute. Available online: https://www.who.int/multi-media/details/air-pollution-kills-13-people-every-minute (accessed on 12 September 2024).
- Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 12 September 2024).
- Kelly, F.J.; Fussell, J.C. Air pollution and airway disease. Clin. Exp. Allergy 2011, 41, 1059–1071. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Wei, H.; Tan, X.; Zhou, W.; Li, W.; Qian, Y. Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. J. Clean. Prod. 2022, 346, 130988. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Ghorani-Azam, A.; Riahi-Zanjani, B. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [CrossRef]
- Shetty, S.; Deepthi, D.; Harshitha, S.; Sonkusare, S.; Naik, P.; Kumari, S.; Madhyastha, H. Environmental Pollutants and Their Effects on Human Health. Heliyon 2023, 9, 19496. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Fu, W. Government environmental governance, structural adjustment and air quality: A quasi-natural experiment based on the Three-year Action Plan to Win the Blue Sky Defense War. J. Environ. Manag. 2021, 277, 111470. [Google Scholar] [CrossRef]
- World Live Air Quality Map | IQAir. Available online: https://www.iqair.com/world-air-quality (accessed on 13 September 2024).
- National Allergy Bureau. Available online: https://pollen.aaaai.org/#/ (accessed on 11 September 2024).
- Ding, J.; Ren, C.; Wang, J.; Feng, Z.; Cao, S.-J. Spatial and temporal urban air pollution patterns based on limited data of monitoring stations. J. Clean. Prod. 2024, 434, 140359. [Google Scholar] [CrossRef]
- Şahin, Ü.A.; Ayvas, C.; Hama, S.; Onat, B.; Uzun, B.; Dogan, M.; Bediroglu, G.; Harrison, R.M. Assessment of ambient particulate matter and trace gasses in Istanbul: Insights from long-term and multi-monitoring stations. Atmos. Pollut. Res. 2024, 15, 102089. [Google Scholar] [CrossRef]
- Cichowicz, R.; Stelęgowski, A. Average hourly concentrations of air contaminants in selected urban, town, and rural sites. Arch. Environ. Contam. Toxicol. 2019, 77, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Zeydan, Ö.; Pekkaya, M. Evaluating air quality monitoring stations in Turkey by using Multi Criteria Decision making. Atmos. Pollut. Res. 2021, 12, 101046. [Google Scholar] [CrossRef]
- Schilt, U.; Barahona, B.; Buck, R.; Meyer, P.; Kappani, P.; Möckli, Y.; Meyer, M.; Schuetz, P. Low-cost sensor node for air quality monitoring: Field tests and validation of Particulate Matter Measurements. Sensors 2023, 23, 794. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhao, Y.; An, X.; Gao, N.; Li, Z.; Zhang, S.; Liang, Y.; Ruan, W.; Bu, Y.; Xin, J.; et al. Effects of airborne pollen on allergic rhinitis and asthma across different age groups in Beijing, China. Sci. Total Environ. 2024, 912, 169215. [Google Scholar] [CrossRef]
- Lappe, B.; Ebelt, S.T.; D’Souza, R.R.; Manangan, A.; Brown, C.L.; Saha, S.; Harris, D.; Chang, H.; Scovronick, N. Pollen and Asthma Morbidity in Atlanta: A 26-Year Time-Series Study. Environ. Int. 2023, 177, 107998. [Google Scholar] [CrossRef] [PubMed]
- Awaya, A.; Kuroiwa, Y. The relationship between annual airborne pollen levels and occurrence of all cancers, and lung, stomach, colorectal, pancreatic and breast cancers: A retrospective study from the National Registry Database of cancer incidence in Japan, 1975–2015. Int. J. Environ. Res. Public Health 2020, 17, 3950. [Google Scholar] [CrossRef] [PubMed]
- Kitinoja, M.A.; Hugg, T.T.; Siddika, N.; Rodriguez Yanez, D.; Jaakkola, M.S.; Jaakkola, J.J.K. Short-Term Exposure to Pollen and the Risk of Allergic and Asthmatic Manifestations: A Systematic Review and Meta-Analysis. BMJ Open 2020, 10, e029069. [Google Scholar] [CrossRef]
- Luyten, A.; Bürgler, A.; Glick, S.; Kwiatkowski, M.; Gehrig, R.; Beigi, M.; Hartmann, K.; Eeftens, M. Ambient Pollen Exposure and Pollen Allergy Symptom Severity in the EPOCHAL Study. Allergy 2024, 79, 1908–1920. [Google Scholar] [CrossRef]
- Hao, K.; Tian, Z.X.; Wang, Z.C.; Huang, S.Q. Pollen Grain Size Associated with Pollinator Feeding Strategy. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201191. [Google Scholar] [CrossRef]
- Yang, M. Sources, chemical components, and toxicological responses of size segregated urban air PM samples in high air pollution season in Guangzhou, China. Sci. Total Environ. 2023, 865, 161092. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Haines, S.; Wang, E.; Nassikas, N.; Kinney, P.L. Synergistic Health Effects of Air Pollution, Temperature, and Pollen Exposure: A Systematic Review of Epidemiological Evidence. Environ. Health 2020, 19, 130. [Google Scholar] [CrossRef] [PubMed]
- Oduber, F.; Calvo, A.I.; Blanco-Alegre, C.; Castro, A.; Vega-Maray, A.M.; Valencia-Barrera, R.M.; Fernández-González, D.; Fraile, R. Links between Recent Trends in Airborne Pollen Concentration, Meteorological Parameters and Air Pollutants. Agric. For. Meteorol. 2019, 264, 16–26. [Google Scholar] [CrossRef]
- Capone, P.; Lancia, A.; D’Ovidio, M.C. Interaction between air pollutants and pollen grains: Effects on public and Occupational Health. Atmosphere 2023, 14, 1544. [Google Scholar] [CrossRef]
- Gisler, A. Allergies in urban areas on the rise: The combined effect of air pollution and Pollen. Int. J. Public Health 2021, 66, 1604022. [Google Scholar] [CrossRef]
- Bastl, K.; Kmenta, M.; Berger, U.E. Defining pollen seasons: Background and recommendations. Curr. Allergy Asthma Rep. 2018, 18, 73. [Google Scholar] [CrossRef]
- Adamov, S.; Lemonis, N.; Clot, B.; Crouzy, B.; Gehrig, R.; Graber, M.-J.; Sallin, C.; Tummon, F. On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers. Aerobiologia 2021, 40, 77–91. [Google Scholar] [CrossRef]
- Buters, J.; Clot, B.; Galán, C.; Gehrig, R.; Gilge, S.; Hentges, F.; O’Connor, D.; Sikoparija, B.; Skjoth, C.; Tummon, F.; et al. Automatic detection of airborne pollen: An overview. Aerobiologia 2022, 40, 13–37. [Google Scholar] [CrossRef]
- Maya-Manzano, J.M.; Smith, M.; Markey, E.; Clancy, J.H.; Sodeau, J.; O’Connor, D.J. Recent developments in monitoring and modelling airborne pollen, a review. Grana 2020, 60, 1–19. [Google Scholar] [CrossRef]
- Zhang, C.-J.; Liu, T.; Wang, J.; Zhai, D.; Chen, M.; Gao, Y.; Yu, J.; Wu, H.-Z. DeepPollenCount: A swin-transformer-yolov5-based deep learning method for pollen counting in various plant species. Aerobiologia 2022, 40, 425–436. [Google Scholar] [CrossRef]
- Erb, S.; Graf, E.; Zeder, Y.; Lionetti, S.; Berne, A.; Clot, B.; Lieberherr, G.; Tummon, F.; Wullschleger, P.; Crouzy, B. Real-time pollen identification using holographic imaging and fluorescence measurements. Atmos. Meas. Tech. 2024, 17, 441–451. [Google Scholar] [CrossRef]
- Jin, B.; Milling, M.; Pilar Plaza, M.; Brunner, J.; Traidl-Hoffmann, C.; Schuller, B.; Damialis, A. Airborne pollen grain detection from partially labelled data utilising semi-supervised learning. Sci. Total Environ. 2023, 891, 164295. [Google Scholar] [CrossRef] [PubMed]
- Pollen Sense. Automated Particulate Sensor—400 Series. APS400 Series Datasheet. Available online: https://www.pollensense.com/pages/discover (accessed on 8 October 2024).
- BSG Ingenieros S.L. Captador de Polen Burkard. 82748 Captador de Polen Datasheet, March 2022. Available online: https://www.bsg.es/docs/82748-Captador-de-Polen-Burkard.pdf (accessed on 8 October 2024).
- SAMYOUNG S&C Sensible Sensing Solutions. Particle/Dust Sensor Module. DSM 501 Series Datasheet. 2014. Available online: https://www.elektronik.ropla.eu/pdf/stock/smy/dsm501.pdf (accessed on 8 October 2024).
- KH-3000-01A Pollen Monitor. Available online: https://atmos.yi-win.com/html/product/Pollen_monitoring/142.html#2 (accessed on 9 September 2024).
- OPC-N3 Particticle Monitor. Available online: http://www.apollounion.com/Upload/DownFiles/202108/OPC-N3.pdf (accessed on 9 September 2024).
- Pollen Monitor BAA500. Available online: https://www.hund.de/images/Pollenmonitor-Flyer_EN.pdf (accessed on 9 September 2024).
- Pollen Sensor PS2. Available online: https://www.shinyei.co.jp/stc/eng/products/optical/ps2.html (accessed on 9 September 2024).
- Sensio Air V3 User Manual. Available online: https://fccid.io/2A8RFSENSIOV3/User-Manual/User-Manual-6842953.pdf (accessed on 9 September 2024).
- SwisensPoleno Mars. Available online: https://www.kenelec.com.au/wp-content/uploads/2024/07/SwisensPoleno-Mars-Real-Time-Pollen-Monitor-SpecSheet-2024.pdf (accessed on 9 September 2024).
- SwisensPoleno Jupiter. Available online: https://www.kenelec.com.au/wp-content/uploads/2024/07/SwisensPoleno-Jupiter-Real-Time-Bioaerosol-Monitor-SpecSheet-2024.pdf (accessed on 9 September 2024).
- WIBS-NEO Wideband Integrated Bioaerosol Sensor Operator Manual. Available online: https://dropletmeasure.wpenginepowered.com/wp-content/uploads/2020/02/DOC-0417-J-WIBS-NEO-OP-MANUAL.pdf (accessed on 9 September 2024).
- El Azari, H.; Renard, J.B.; Lauthier, J.; Dudok de Wit, T. A laboratory evaluation of the new automated pollen sensor beenose: Pollen discrimination using machine learning techniques. Sensors 2023, 23, 2964. [Google Scholar] [CrossRef] [PubMed]
- Grant-Jacob, J.A.; Praeger, M.; Eason, R.W.; Mills, B. In-flight sensing of pollen grains via laser scattering and deep learning. Eng. Res. Express 2021, 3, 025021. [Google Scholar] [CrossRef]
- De Weger, L.A.; Molster, F.; de Raat, K.; den Haan, J.; Romein, J.; van Leeuwen, W.; de Groot, H.; Mostert, M.; Hiemstra, P.S. A new portable sampler to monitor pollen at street level in the environment of patients. Sci. Total Environ. 2020, 741, 140404. [Google Scholar] [CrossRef]
- Cao, N.; Meyer, M.; Thiele, L.; Saukh, O. Automated Pollen Detection with an Affordable Technology. In Proceedings of the 2020 International Conference on Embedded Wireless Systems and Networks (EWSN ’20), Lyon, France, 17–19 February 2020. [Google Scholar]
- Rao, Z.; Hua, D.; He, T.; Wang, Q.; Le, J. Ultraviolet laser-induced fluorescence lidar for pollen detection. Optik 2017, 136, 497–502. [Google Scholar] [CrossRef]
- Kawashima, S.; Thibaudon, M.; Matsuda, S.; Fujita, T.; Lemonis, N.; Clot, B.; Oliver, G. Automated Pollen Monitoring System using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia 2017, 33, 351–362. [Google Scholar] [CrossRef]
- Crouzy, B.; Stella, M.; Konzelmann, T.; Calpini, B.; Clot, B. All-optical automatic pollen identification: Towards an operational system. Atmos. Environ. 2016, 140, 202–212. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Kurani, H.B.; Kurani, H.B. Wearable Device for Detecting Microorganisms, Sterilizing Pathogens, and Environmental Monitoring. United. States Patent US11490852B1, 8 November 2022. [Google Scholar]
- Lucas, R.; Bunderson, L.; Allan, N.; Lambson, K. Automated Airborne Particulate Matter Collection, Imaging, Identification, and Analysis. United. States Patent US20230358661A1, 9 November 2023. [Google Scholar]
- Shiki, Y.; Nishino, J.; Sasai, Y.; Suzumura, K.; Hashimoto, T. Pollen Forecasting Device, Air Treatment System, Pollen Forecasting Method, and Program. Japanese Patent JP7518413B2, 18 July 2024. [Google Scholar]
- Manautou, P.; Kent, J.; Tien, A.-C. Airborne Particle Monitoring System with Illumination and Imaging. United. States Patent US11698331B1, 11 July 2023. [Google Scholar]
- Nakamura, K.; Nakamura, N.; Kishimoto, Y. Pollen Sensor. International Patent WO2008063192A1, 29 May 2008. [Google Scholar]
- Zeng, L.; Xu, X.; Li, Z. The On-Line Monitoring System of Pollen in a Kind of Air. Chinese Patent CN105388093B, 28 August 2018. [Google Scholar]
- Chen, S.; Kong, T.; Van der Sluis, P. Particle Sensor and Sensing Method. European Patent EP3605059A1, 31 July 2018. [Google Scholar]
- Satoshi, O.; Toyohiro, U.; Toshiaki, I. Pollen Sensor and Method. European Patent EP1408321B1, 11 February 2006. [Google Scholar]
- Richard, J.; Lauthier, J.; Renard, J.-B. Device for Detecting the Presence of Pollen in the Air, and Corresponding Detection Method. European Patent EP4085246B1, 8 May 2024. [Google Scholar]
- Vanmeerbeeck, G.; Lin, Z.; Yurt, A.; Stahl, R.; Lambrechts, A. Device for Detecting Particles Including Pollen in Air Using Digital Holographic Reconstruction. United. States Patent US11946850B2, 2 April 2024. [Google Scholar]
- Bittner, A.; Dehe, A.; Wienbruch, R. Method for the Detection of Aerosol Particles in Ambient Air. Canadian Patent CA3183076A1, 21 July 2021. [Google Scholar]
- White, R.M. Optimizing Analysis and Identification of Particulate Matter. United. States Patent US20150355084A1, 10 December 2015. [Google Scholar]
- Paulus, C.; Blanc, O.; Mermet, X.; Roux, J.-M. Method and Apparatus for Selecting, Detecting, Counting and Identifying Pollen and/or Mould Spores Initially in Suspension in Atmospheric Air. International Patent WO2023110716A1, 22 June 2023. [Google Scholar]
- Huang, J.-T.; Chien, C.H.; Lin, Y.-C. A Detection Mechanism of Pollen’s Concezntration. Taiwanese Patent TW200804801A, 11 January 2010. [Google Scholar]
- Yamaguchi, M.; Izumi, K.; Tateishi, F. Particle Detection Sensor, Method for Manufacturing Particle Detection Sensor, and Method for Detecting Particle Using Particle Detection Sensor. United. States Patent US8492172B2, 23 July 2013. [Google Scholar]
- Huffman, J.A.; Perring, A.E.; Savage, N.J.; Clot, B.; Crouzy, B.; Tummon, F.; Shoshanim, O.; Damit, B.; Schneider, J.; Sivaprakasam, V.; et al. Real-Time Sensing of Bioaerosols: Review and Current Perspectives. Aerosol Sci. Technol. 2020, 54, 465–495. [Google Scholar] [CrossRef]
- Lin, X.; Luo, J.; Liao, M.; Su, Y.; Lv, M.; Li, Q.; Xiao, S.; Xiang, J. Wearable Sensor-Based Monitoring of Environmental Exposures and the Associated Health Effects: A Review. Biosensors 2022, 12, 1131. [Google Scholar] [CrossRef]
Model/Name | Manufacturer | Sensing Principle | Real-Time Sampling | Uses I.A. |
---|---|---|---|---|
APS400 Particulate Sensor [41] | Pollen Sense LLC, Provo, the United States | Spore-trap style collection | Time intervals | Yes |
Captador Polen Burkard [42] | BSG Ingenieros S.L., Valencia, Spain | Spore collection | No | No |
DSM501A [43] | SAMYOUNG S&C Sensible Sensing Solutions, Seongnam, South Korea | Light scattering | Yes | No |
KH-3000-01 [44] | Yamatronics Corporation, Kanagawa, Japan | Light scattering | Yes | No |
OPC-N3 Particle Monitor [45] | Alphasense, Braintree, the United Kingdom | Light scattering | Yes | No |
Pollen Monitor BAA500 [46] | Helmut Hund GmbH, Wetzlar, Germany | Light scattering | Yes | Not mentioned |
PS2 Pollen Sensor [47] | Shinyei Technology CO. LTD., Kobe, Japan | Light scattering | Yes | No |
Sensio Air V3 [48] | Sensio Air, London, England | Light scattering | Yes | Yes |
Swisens Poleno Mars [49] | Swisens, Emmen, Switzerland | Light scattering | Yes | Yes |
Swisens Poleno Jupiter [50] | Swisens, Emmen, Switzerland | Light scattering | Yes | Yes |
Wideband Integrated Bioaerosol Sensor [51] | Droplet Measurement Technologies, Longmont, the United States | Light scattering | Yes | No |
Title | Year of Publication | Pollen Sensing Principle | Real-Time Sampling | Uses I.A. |
---|---|---|---|---|
A laboratory evaluation of the new automated pollen sensor beenose: pollen discrimination using machine learning techniques [52] | 2023 | Light scattering | Yes | Yes |
In-flight sensing of pollen grains via laser scattering and deep learning [53] | 2021 | Light scattering | Yes | Yes |
A new portable sampler to monitor pollen at street level in the environment of patients [54] | 2020 | Pollen collector | No | No |
Automated pollen detection with an affordable technology [55] | 2020 | Pollen collector | No | Yes |
Ultraviolet laser-induced fluorescence lidar for pollen detection [56] | 2017 | Light scattering | Not specified | No |
Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen [57] | 2017 | Light scattering | Yes | No |
All-optical automatic pollen identification: towards an operational system [58] | 2016 | Light scattering | Yes | Yes |
Inclusion | Exclusion |
---|---|
|
|
|
|
|
Source | Input Query String | |||||
---|---|---|---|---|---|---|
“pollen grain” and “sensor” | “aerobiology” and “monitoring” | “aerobiology” and “pollen” | “pollen count” and “pollen sensor” | “pollen monitoring” and “pollen count” | “pollen monitoring” and “pollen sensor” | |
Google Patents | 153 | 37 | 31 | 26 | 3 | 3 |
WIPO’s PatentScope | 682 | 96 | 67 | 70 | 2 | 4 |
USPTO | 514 | 34 | 31 | 50 | 3 | 4 |
Section | Class | Subclass | Group | Subgroup | Patents |
---|---|---|---|---|---|
A Human necessities | A61 | A61B | A61B5 | A61B5/00 | US11490852B1 [60] |
A61L | A61L2 | A61L2/00 | US11490852B1 [60] | ||
B Performing operations and transportation | B03 | B03C | B03C3 | B03C3/36 | US20230358661A1 [61] |
B03C3/45 | US20230358661A1 [61] | ||||
F Mechanical engineering, lighting, heating, weapons, and blasting | F24 | F24F | F24F11 | F24F11/6G4 | JP7518413B2 [62] |
G Physics | G01 | G01B | G01B11 | G01B11/24 | US11698331B1 [63] |
WO2008063192A1 [64] | |||||
G01B11/30 | WO2008063192A1 [64] | ||||
G01N | G01N1 | G01N1/22 | US11698331B1 [63] | ||
US20230358661A1 [61] | |||||
G01N1/24 | US11698331B1 [63] | ||||
G01N1/40 | US20230358661A1 [61] | ||||
G01N15 | G01N15/00 | US11698331B1 [63] | |||
CN105388093B [65] | |||||
EP3605059A1 [66] | |||||
EP1408321B1 [67] | |||||
G01N15/02 | US11698331B1 [63] | ||||
US20230358661A1 [61] | |||||
EP1408321B1 [67] | |||||
EP4085246B1 [68] | |||||
G01N15/06 | US11946850B2 [69] | ||||
CA3183076A1 [70] | |||||
CN105388093B [65] | |||||
US20230358661A1 [61] | |||||
EP3605059A1 [66] | |||||
JP7518413B2 [62] | |||||
US11698331B1 [63] | |||||
EP4085246B1 [68] | |||||
G01N15/10 | EP3605059A1 [66] | ||||
G01N15/14 | US11946850B2 [69] | ||||
US20150355084A1 [71] | |||||
US20230358661A1 [61] | |||||
EP1408321B1 [67] | |||||
EP3605059A1 [66] | |||||
WO2023110716A1 [72] | |||||
US11698331B1 [63] | |||||
G01N15/1434 | US11946850B2 [69] | ||||
G01N21 | G01N21/21 | EP1408321B1 [67] | |||
G01N21/47 | EP4085246B1 [68] | ||||
G01N21/53 | EP4085246B1 [68] | ||||
G01N21/85 | EP4085246B1 [68] | ||||
G01N21/3563 | US20150355084A1 [71] | ||||
G01N27 | G01N27/26 | TW200804801A [73] | |||
G01N33 | G01N33/00 | US20230358661A1 [61] | |||
CA3183076A1 [70] | |||||
G01N33/49 | US11698331B1 [63] | ||||
G01N35/00 | US11698331B1 [63] | ||||
G03 | G03H | G03H1 | G03H1/08 | US11946850B2 [69] | |
G06 | G06F | G06F18 | G06F18/24 | US20230358661A1 [61] | |
G06T | G06T7 | G06T7/11 | US20230358661A1 [61] | ||
G06V | G06V20 | G06V20/69 | US11698331B1 [63] | ||
H01 | H01L | H01L21 | H01L27/00 | US8492172B2 [74] | |
H01L27 | H01L27/14 | US8492172B2 [74] | |||
H Electricity | H04 | H04N | H04N23 | H04N23/56 | US20230358661A1 [61] |
H04N23/67 | US20230358661A1 [61] | ||||
H04N23/74 | US20230358661A1 [61] |
ID | Patent # | Title | Status | Application Date | Inventor(s) | Applicant | Pollen Type Detection | Pollen Size Detection | Sensor Type | Detected Particles and Parameters | Device Used to Display Data | Fixed/ Mobile | Indoor/Outdoor Monitoring | Calibration Process | Provides Real-Time Data | Artificial Intelligence Implementation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | EP1408321B1 [67] | Pollen sensor and method | Expired | 2 October 2003 | Satoshi Okomura, Toyohiro Usui, and Toshiaki Iwai | Shinyei Corp | No | No | Optical sensor (light scattering) | Pollen | External device | Fixed | Not specified | Not mentioned | Yes | Not implemented |
B | TW200804801A [73] | A detection mechanism of pollen’s concentration | Active | 13 July 2006 | Jung-Tang Huang, Chao-Heng Chien, and Yi-Ching Lin | Kuender & Co Ltd. | Yes | No | Field-effect transistor-based pollen sensor | Pollen | External device | Fixed | Not specified | Not mentioned | Yes | Not implemented |
C | WO2008063192A1 [64] | Pollen sensor | Active | 22 November 2006 | Kishimoto Nakamura, Norio Nakamura, and Yuri Kishimoto | Optoelectronics Co., Ltd., Opticon, Inc. | Yes | Yes | Optical (light scattering) and camera sensor (CMOS, CCD) | Pollen | Integrated display | Fixed | Not specified | Not mentioned | No; typically, a 24 h waiting time, though this is adjustable | Not implemented |
D | US8492172B2 [74] | Particle detection sensor, method for manufacturing particle detection sensor, and method for detecting particle using particle detection sensor | Expired | 23 July 2013 | Yamaguchi; Mayumi, Izumi; Konami, Tateishi; and Fuminori | Semiconductor Energy Laboratory Co., Ltd. | Yes | Yes | Particle detection sensor (MEMS sensor) | Airborne particulate matter | External device | Not specified | Not specified | Not mentioned | No; specifies a short waiting time | Not implemented |
E | US20150355084A1 [71] | Optimizing analysis and identification of particulate matter | Abandoned | 18 December 2013 | Richard M. White | University of California | Yes | Yes | Optical, camera (CMOS), and/or photoacoustic sensors | Pollen and particulate matter | External device | Fixed | Indoor and outdoor | Not mentioned | No; waiting time not specified | Not implemented |
F | CN105388093B [65] | The on-line monitoring system of pollen in a kind of air | Expired | 2 November 2015 | Zeng Limin, Xu Xunan, and Li Zailing | Peking University | Yes | Yes | Camera sensor (CCD) | Pollen | External device | Not specified | Not specified | Not mentioned | Yes | Not implemented |
G | EP3605059A1 [66] | Particle sensor and sensing method | Withdrawn | 31 July 2018 | Shuang Chen, Tao Kong, and Paul Van Der Sluis | Koninklijke Philips NV | Yes | Yes | Optical sensor (light scattering) and a humidity control system | Pollen, dust, organic and inorganic particles | Not specified | Not specified | Not specified | Not mentioned | Yes | Not implemented |
H | US11698331B1 [63] | Airborne particle monitoring system with illumination and imaging | Active | 16 December 2020 | Pedro Manautou, Joel Kent, and An-chun Tien | Scanit Technologies Inc. | Yes | Yes | Camera sensor | Pollen | Integrated display | Fixed | Indoor and outdoor | Not mentioned | Yes | Machine learning |
I | US11946850B2 [69] | Device for detecting particles including pollen in air using digital holographic reconstruction | Active | 18 December 2020 | Geert Vanmeerbeeck, Ziduo Lin, Abdulkadir Yurt, Richard Stahl, and Andy Lambrechts | Interuniversitair Microelektronica Centrum vzw IMEC | Yes | Yes | Optical (light scattering and image sensor (CCD or CMOS camera)) | Pollen, molds, fungi, bacteria, dust, soot, and other pollutants | External device | Fixed | Indoor and outdoor | Not mentioned | Yes | Not implemented |
J | EP4085246B1 [68] | Device for detecting the presence of pollen in the air, and corresponding detection method | Active | 21 December 2020 | Jérôme Richard, Johann Lauthier, and Jean-Baptiste Renard | Lify Air, Centre National de la Recherche Scientifique CNRS, Universite dOrleans | Yes | Yes | Optical sensor (light scattering) | Pollen and meteorological conditions (temperature, atmospheric pressure, relative humidity, luminosity, precipitation, and wind speed) | External device | Fixed | Outdoor | Not mentioned | Yes | Machine learning |
K | CA3183076A1 [70] | Method for the detection of aerosol particles in ambient air | Pending | 21 July 2021 | Achim Bittner, Alfons Dehe, and Rebecca Wienbruch | Hann-Schickard-Gesellschaft fuer Angewand-te Forschung eV | Yes | Yes | Photoacoustic gas sensor (MEMS sensor) | Bioaerosols, spores, bacteria, and viruses | External device | Fixed | Not specified | Uses reference data obtained from a calibration chamber with known aerosol concentrations | No; waiting time not specified | Not implemented |
L | US11490852B1 [60] | Wearable device for detecting microorganisms, sterilizing pathogens, and environmental monitoring | Active | 9 August 2021 | Hemal B Kurani and Hetal B Kurani | Individual | Yes | Yes | Optical sensor (light scattering and image sensor) | Pollen, pathogens, microorganisms, dust mite allergens, and environmental conditions | Integrated display | Mobile | Indoor and outdoor | Linear sensors used in the device are calibrated by measuring voltage levels when in contact with clean air or air meant to be used as a reference | Yes | Machine learning |
M | JP7518413B2 [62] | Pollen forecasting device, air treatment system, pollen forecasting method, and program | Active | 30 September 2022 | Shiki Yu, Jun Nishino, Yuta Sasai, Kei Suzumura, and Tetsu Hashimoto | Daikin Industries Ltd. | Yes | No | Camera sensor | Pollen and dust | Integrated display | Fixed | Indoor | Not mentioned | No; 20 min waiting time | Machine learning |
N | WO2023110716A1 [72] | Method and apparatus for selecting, detecting, counting and identifying pollen and/or mould spores initially in suspension in atmospheric air | Pending | 12 December 2022 | Caroline Paulus, Olivier Blanc, Xavier Mermet, and Jean-Maxime Roux | Commissariat A L’energie Atomique Et Aux Energies Alternatives | Yes | Yes | Optical sensor (light scattering and CMOS-type image sensors) | Pollen and mold spore | External device | Fixed | Not specified | Not mentioned | Yes | Deep learning |
O | US20230358661A1 [61] | Automated airborne particulate matter collection, imaging, identification, and analysis | Pending | 10 April 2023 | Richard Lucas, Landon Bunderson, Nathan Allan, and Kevn Lambson | Pollen Sense LLC | Yes | Yes | Camera sensor | Pollen, dust, mold spores, bacterial cells, and soot | External device | Not specified | Not specified | Not mentioned | No; waiting time not specified | Machine learning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas-González, D.; Delgado-Torres, J.C.; Reyna, M.A.; Altamira-Colado, E.; García-Vázquez, J.P.; Sánchez-Barajas, M.A.; L. Avitia, R. Monitoring of Airborne Pollen: A Patent Review. Atmosphere 2024, 15, 1217. https://doi.org/10.3390/atmos15101217
Cuevas-González D, Delgado-Torres JC, Reyna MA, Altamira-Colado E, García-Vázquez JP, Sánchez-Barajas MA, L. Avitia R. Monitoring of Airborne Pollen: A Patent Review. Atmosphere. 2024; 15(10):1217. https://doi.org/10.3390/atmos15101217
Chicago/Turabian StyleCuevas-González, Daniel, Juan C. Delgado-Torres, M. A. Reyna, Eladio Altamira-Colado, Juan Pablo García-Vázquez, Martín Aarón Sánchez-Barajas, and Roberto L. Avitia. 2024. "Monitoring of Airborne Pollen: A Patent Review" Atmosphere 15, no. 10: 1217. https://doi.org/10.3390/atmos15101217
APA StyleCuevas-González, D., Delgado-Torres, J. C., Reyna, M. A., Altamira-Colado, E., García-Vázquez, J. P., Sánchez-Barajas, M. A., & L. Avitia, R. (2024). Monitoring of Airborne Pollen: A Patent Review. Atmosphere, 15(10), 1217. https://doi.org/10.3390/atmos15101217