Salix humboldtiana as an Indicator of Air Pollution by Trace Metals in the Urban Areas of the City of Loja, Southern Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
- -
- Light vehicles (LV) = cars/small vans.
- -
- Heavy vehicles (HV) = trucks/buses.
- -
- Motorbikes (MT) = motorbikes.
2.3. Chemical Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abaje, I.B.; Bello, Y.; Ahmad, S.A. A Review of Air Quality and Concentrations of Air Pollutants in Nigeria. Appl. Sci. Environ. Manag. 2020, 24, 373–379. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 2013, 450, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Piracha, A.; Chaudhary, M.T. Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Souto-Oliveira, C.E.; Andrade, M.D.F.; Kumar, P.; Lopes, F.J.D.S.; Babinski, M.; Landulfo, E. Effect of Vehicular Traffic, Remote Sources and New Particle Formation on the Activation Properties of Cloud Condensation Nuclei in the Megacity of São Paulo, Brazil. Atmos. Chem. Phys. 2016, 16, 14635–14656. [Google Scholar] [CrossRef]
- Khalid, N.; Hussain, M.; Young, H.S.; Boyce, B.; Aqeel, M.; Noman, A. Effects of Road Proximity on Heavy Metal Concentrations in Soils and Common Roadside Plants in Southern California. Environ. Sci. Pollut. Res. 2018, 25, 35257–35265. [Google Scholar] [CrossRef]
- Ceburnis, D. Conifer Needles as Biomonitors of Atmospheric Heavy Metal Deposition: Comparison with Mosses and Precipitation, Role of the Canopy. Atmos. Environ. 2000, 34, 4265–4271. [Google Scholar] [CrossRef]
- Stephens-Romero, S.; Carreras-Sospedra, M.; Brouwer, J.; Dabdub, D.; Samuelsen, S. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles. Environ. Sci. Technol. 2009, 43, 9022–9029. [Google Scholar] [CrossRef]
- Fellet, G.; Pošćić, F.; Licen, S.; Marchiol, L.; Musetti, R.; Tolloi, A.; Barbieri, P.; Zerbi, G. PAHs accumulation on leaves of six evergreen urban shrubs: A field experiment. Atmos. Pollut. Res. 2016, 7, 915–924. [Google Scholar] [CrossRef]
- Piccardo, M.T.; Pala, M.; Bonaccurso, B.; Stella, A.; Redaelli, A.; Paola, G.; Valerio, F. Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environ. Pollut. 2005, 133, 293–301. [Google Scholar] [CrossRef]
- Ratola, N.; Amigo, J.M.; Oliveira, M.S.; Araújo, R.; Silva, J.A.; Alves, A. Differences between Pinus pinea and Pinus pinaster as bioindicators of polycyclic aromatic hydrocarbons. Environ. Exp. Bot. 2011, 72, 339–347. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zhang, L.; Zou, R.; Zhang, Z. Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5). Sci. Rep. 2017, 7, 3206. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, A.; Sevik, H.; Cetin, M.; Saleh, E. Changes in Heavy Metal Accumulation Depending on Traffic Density in Some Landscape Plants. Pol. J. Environ. Stud. 2018, 27, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Alexandrino, K.; Viteri, F.; Rybarczyk, Y.; Guevara Andino, J.E.; Zalakeviciute, R. Biomonitoring of Metal Levels in Urban Areas with Different Vehicular Traffic Intensity by Using Araucaria heterophylla Needles. Ecol. Indic. 2020, 117, 106701. [Google Scholar] [CrossRef]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as bioindicator of heavy metal pollution in three European cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.A.; Amico, I.; Bozzi, J.; Gazo, M.C.; Cerrillo, T.; Datri, L.; Hansen, M.; Leyer, I.; López, H.; Marchelli, P.; et al. 7.2 Salix humboldtiana: A Very Ancient Willow and the Only Native to Argentina. In Low Intensity Breeding of Native Forest Trees in Argentina; Springer: Berlin/Heidelberg, Germany, 2020; Volume 192, pp. 1–20. [Google Scholar]
- Parolin, P.; Oliveira, A.C.; Piedade, M.T.F.; Wittmann, F.; Junk, W.J. Pioneer trees in Amazonian floodplains: Three key species form monospecific stands in different habitats. Folia Geobot. 2002, 37, 225–238. [Google Scholar] [CrossRef]
- Scarpa, G.F.; Rosso, C.N. Etnobotánica histórica de grupos Criollos de Argentina IV: Identificación taxonómica de las plantas y análisis de datos medicinales del Chaco Húmedo provenientes de la Encuesta Nacional de Folklore de 1921. Bonplandia 2019, 28, 5–42. [Google Scholar] [CrossRef]
- Mata-Balderas, J.M.; Alanís-Rodríguez, E.; Mora-Olivo, A.; Collantes-Chávez-Costa, A. Woody plant community structure and composition of an urban riparian forest in Monterrey metropolitan area, Northeast Mexico. J. Torrey Bot. Soc. 2022, 149, 210–218. [Google Scholar] [CrossRef]
- Carrera, M.; Altamirano, L.; Barragán, K. Host species of the hemiparasitic shrub Phoradendron nervosum Oliv. in densely urban areas of Quito, Ecuador. ACI Av. Cienc. Ing. 2023, 15, 9. [Google Scholar] [CrossRef]
- Ochoa-Jimenez, D.A.; Cueva-Agila, A.; Prieto, M.; Aragón, G.; Benitez, Á. Cambios en la composición de líquenes epífitos relacionados con la calidad del aire en la ciudad de loja (Ecuador). Caldasia 2015, 37, 333–343. [Google Scholar] [CrossRef]
- Muñoz, M.E.; Vásquez, E.; Portilla, F. Estimates of the Carbon Capture Potential in Urban Parks and Vehicle CO2 Emissions in Cuenca, Ecuador. In Communication, Smart Technologies and Innovation for Society, Proceedings of the CITIS 2021, Guayaquil, Ecuador, 26–28 May 2021; Springer: Singapore, 2022; pp. 405–417. [Google Scholar]
- Merino, B.; Gualán, R.; Macas, M.F.; Armijos, A.; Fernández, P.; Jumbo, N.; Pucha-Cofrep, D.A. Caracterización florística y estructura del arbolado urbano de la ciudad de Loja. Bosques Latid. Cero 2023, 13, 1–22. [Google Scholar]
- Benítez, Á.; Medina, J.; Vásquez, C.; Loaiza, T.; Luzuriaga, Y.; Calva, J. Lichens and Bromeliads as Bioindicators of Heavy Metal Deposition in Ecuador. Diversity 2019, 11, 28. [Google Scholar] [CrossRef]
- Morales-Estupiñan, M.J.; Recalde, S.; Orozco, K.; Ponce, W. Analysis of heavy metals in Azadirachta indica a. Juss leaves, as bioindicator for monitoring Enviromental pollution in Guayaquil, Ecuador. In Proceedings of the 6th World Congress on New Technologies (NewTech’20), Prague, Czech Republic, 19–21 August 2020; Volume 145, pp. 1–5. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, B.; Meza-Figueroa, D.; Vizuete-Jaramillo, E.; Robles-Morua, A.; Angulo-Molina, A.; Reyes-Castro, P.A.; Lnguaggiato, C.; Gonzalez-Grijalva, B.; Pedroza-Montero, M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. Environ. Geochem. Health 2023, 45, 3229–3250. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Johansson, C.; Norman, M.; Burman, L. Road traffic emission factors for heavy metals. Atmos. Environ. 2009, 43, 4681–4688. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241. [Google Scholar] [CrossRef]
- Benítez, Á.; Armijos, L.; Calva, J. Monitoring Air Quality with Transplanted Bryophytes in a Neotropical Andean City. Life 2021, 11, 821. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef]
- Mateos, A.C.; Amarillo, A.C.; Carreras, H.A.; González, C.M. Land Use and Air Quality in Urban Environments: Human Health Risk Assessment due to Inhalation of Airborne Particles. Environ. Res. 2018, 161, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Solgi, E.; Oshvandi, Z. Spatial Patterns, Hotspot, and Risk Assessment of Heavy Metals in Different Land Uses of Urban Soils (Case Study: Malayer City). Hum. Ecol. Risk Assess. Int. J. 2018, 24, 256–270. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, R.; Fu, S.; Wu, Z.; Chen, H.Y.H.; Liu, H. Spatial Heterogeneity of Heavy Metal Contamination in Soils and Plants in Hefei, China. Sci. Rep. 2019, 9, 1049. [Google Scholar] [CrossRef] [PubMed]
- Grigalavičienė, I.; Rutkovienė, V.; Marozas, V. The Accumulation of Heavy Metals Pb, Cu and Cd at Roadside Forest Soil. Pol. J. Environ. Stud. 2005, 14, 109–115. [Google Scholar]
- Giacomino, A.; Malandrino, M.; Colombo, M.L.; Miaglia, S.; Maimone, P.; Blancato, S.; Conca, E.; Abollino, O. Metal Content in Dandelion (Taraxacum officinale) Leaves: Influence of Vehicular Traffic and Safety upon Consumption as Food. J. Chem. 2016, 2016, 9842987. [Google Scholar] [CrossRef]
- Sevik, H.; Ozel, H.B.; Cetin, M.; Özel, H.U.; Erdem, T. Determination of Changes in Heavy Metal Accumulation Depending on Plant Species, Plant Organism, and Traffic Density in Some Landscape Plants. Air Qual. Atmos. Health 2019, 12, 189–195. [Google Scholar] [CrossRef]
- Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gómez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and Chemical Patterns of Size Fractionated Road Dust Collected in a Megacitiy. Atmos. Environ. 2011, 45, 1497–1505. [Google Scholar] [CrossRef]
- Morton-Bermea, O.; Hernández-Álvarez, E.; Ordoñez-Godínez, S.L.; Montes-Ávila, I. Mercury, platinum, antimony and other trace elements in the atmospheric environment of the urban area of Mexico City: Use of Ficus benjamina as biomonitor. Bull. Environ. Contam. Toxicol. 2021, 106, 106–665. [Google Scholar] [CrossRef]
- Tomasevic, M.; Rajšić, S.; Đorđević, D.; Tasić, M.; Krstić, J.B.; Novaković, V.T. Heavy metals accumulation in tree leaves from urban areas. Environ. Chem. Lett. 2004, 2, 151–154. [Google Scholar] [CrossRef]
- Cakaj, A.; Drzewiecka, K.; Hanć, A.; Lisiak-Zielińska, M.; Ciszewska, L.; Drapikowska, M. Plants as effective bioindicators for heavy metal pollution monitoring. Environ. Res. 2024, 256, 119222. [Google Scholar] [CrossRef]
- Mohanraj, R.; Azeez, P.A.; Priscilla, T. Heavy metals in airborne particulate matter of urban Coimbatore. Arch. Environ. Contam. Toxicol. 2004, 47, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, A.; Cetin, M.; Sevik, H.; Isinkaralar, K.; Saleh, E.A.A. Variation of heavy metal accumulation in certain landscaping plants due to traffic density. Environ. Dev. Sustain. 2020, 22, 2385–2398. [Google Scholar] [CrossRef]
- Kaur, M.; Bhatti, S.S.; Katnoria, J.K.; Nagpal, A.K. Investigation of metal concentrations in roadside soils and plants in urban areas of Amritsar, Punjab, India, under different traffic densities. Environ. Monit. Assess. 2021, 193, 222. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Baral, B.; Dhital, N.B.; Yang, H.H. Assessing air pollution tolerance of plant species in vegetation traffic barriers in Kathmandu Valley, Nepal. Sustain. Environ. Res. 2021, 31, 3. [Google Scholar] [CrossRef]
- Öztürk, S.; Bozdogan, E. The contribution of urban road trees on improving the air quality in an urban area. Fresenius Environ. Bull. 2015, 24, 1822–1829. [Google Scholar]
- Březinová, T.; Jan, V. Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecol. Eng. 2015, 79, 94–99. [Google Scholar] [CrossRef]
- Tošić, S.; Alagić, S.; Dimitrijević, M.; Pavlović, A.; Nujkić, M. Plant parts of the apple tree (Malus spp.) as possible indicators of heavy metal pollution. Ambio 2016, 45, 501–512. [Google Scholar] [CrossRef]
- Yabanli, M.; Yozukmaz, A.; Sel, F. Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): An example of Kadin Creek (Mugla, Turkey). Braz. Arch. Biol. Technol. 2014, 57, 434–440. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalida, S.; Schreck, E.; Xiong, T.; Nabeel, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef]
Heavy Metal | S. humboldtiana (S) | S. humboldtiana (C) | S. humboldtiana (N) | S. humboldtiana (F) | Ficus enjamina | Aesculus hippocastanum | Tilia sp. | Lolium multiflorum | Trifolium pratense | Rumex acetosa | Amaranthus retroflexus | Plantago lanceolata | KW | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 0.40 ± 0.60 | 0.21 ± 0.14 | 0.45 ± 0.34 | 0.26 ± 0.31 | 0.2–4.9 | 0.9–1.4 | 13.3 ± 4.4 | 7.04 ± 0.35 | 21.6 ± 4.9 | 15.5 ± 3.6 | 18 ± 10 | 5.17 | 0.1597 | |
Cr | 2.94 ± 1.086 | 2.59 ± 0.521 | 4.17 ± 2.30 | 2.62 ± 0.95 | 191 | 0.33 | 0.02 | 10.58 | 0.01423 | |||||
Cu | 17.234 ± 6.602 | <LOD | <LOD | <LOD | 237.8 | 13.1–110.2 | 10.3–41.4 | 12.62 | NA | |||||
Fe | 394.69 ± 134.16 | 337.03 ± 87.77 | 505.24 ± 140.43 | 306.08 ± 195.33 | 183–439.6 | 105.9–324.5 | 17.34 | 0.0009 | ||||||
Ni | <LOD | <LOD | 0.187 ± 0.73 | <LOD | 69.6 | 1017 ± 405 | 507 ± 54 | 1397 ± 207 | 820 ± 226 | 1022 ± 727 | 3 | NA | ||
Pb | 0.03 ± 0.051 | 0.005 ± 0.02 | 0.028 ± 0.10 | 0.031 ± 0.09 | 156 | 5.35–20.3 | 1.88–11.4 | 175 ± 25 | 120.5 ± 1.4 | 704 ± 387 | 463 ± 153 | 407 ± 320 | 7.01 | 0.07148 |
Mn | 0.07 ± 0.094 | 0.124 ± 0.09 | 0.084 ± 0.11 | 0.362 ± 0.28 | 66.9–112.3 | 23.83 | 2.711 | |||||||
Zn | 0.07 ± 0.047 | 0.059 ± 0.22 | 0.040 ± 0.29 | 0.057 ± 0.28 | 654.3 | 17.2–47.1 | 15.2–28.6 | 3131 ± 1291 | 1727 ± 198 | 3756 ± 618 | 2754 ± 465 | 3244 ± 1936 | 19.19 | 0.00025 |
Al | 0.25 ± 0.093 | 0.218 ± 0.06 | 0.456 ± 0.53 | 0.271 ± 0.15 | 10.91 | 0.01223 |
Zones/Heavy Metal | Fe | Pb | Cd | Cr | Mn | Zn | Al |
---|---|---|---|---|---|---|---|
C vs. S | |||||||
Ctrl vs. S | 0 | 0.0001 | |||||
N vs. S | |||||||
C vs. N | 0.0117 | 0.0216 | 0.0038 | ||||
Ctrl vs. N | 0.0002 | 0.0103 | 0.0002 | 0.0117 | |||
C vs. Ctrl | 0.0245 |
Hour | Zones | Locality | LDV | HDV | MS |
---|---|---|---|---|---|
08:20 | South | Argelia | 185 | 105 | 23 |
09:00 | South | Tebaida | 195 | 90 | 25 |
09:40 | South | Cabo Minacho | 255 | 62 | 32 |
Total | 635 | 257 | 80 | ||
10:15 | Center | Catedral-10 Agosto | 300 | 80 | 33 |
10:55 | Center | Parque Bolívar | 635 | 295 | 86 |
11.30 | Center | Iess | 407 | 130 | 42 |
Total | 1342 | 505 | 161 | ||
09:25 | North | Amable María | 85 | 32 | 4 |
10:00 | North | Sauces Norte | 151 | 46 | 16 |
10:40 | North | Terminal | 639 | 104 | 40 |
Total | 875 | 182 | 60 | ||
09:00 | Control | Toma De Agua “El Carmen” | 10 | 2 | 0 |
10:15 | Control | El Carmen | 4 | 3 | 0 |
11:15 | Control | Sendero “Zamora Huayco” | 24 | 11 | 6 |
Total | 38 | 16 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benítez, Á.; Ordóñez, D.; Calva, J. Salix humboldtiana as an Indicator of Air Pollution by Trace Metals in the Urban Areas of the City of Loja, Southern Ecuador. Atmosphere 2024, 15, 1160. https://doi.org/10.3390/atmos15101160
Benítez Á, Ordóñez D, Calva J. Salix humboldtiana as an Indicator of Air Pollution by Trace Metals in the Urban Areas of the City of Loja, Southern Ecuador. Atmosphere. 2024; 15(10):1160. https://doi.org/10.3390/atmos15101160
Chicago/Turabian StyleBenítez, Ángel, Diego Ordóñez, and James Calva. 2024. "Salix humboldtiana as an Indicator of Air Pollution by Trace Metals in the Urban Areas of the City of Loja, Southern Ecuador" Atmosphere 15, no. 10: 1160. https://doi.org/10.3390/atmos15101160
APA StyleBenítez, Á., Ordóñez, D., & Calva, J. (2024). Salix humboldtiana as an Indicator of Air Pollution by Trace Metals in the Urban Areas of the City of Loja, Southern Ecuador. Atmosphere, 15(10), 1160. https://doi.org/10.3390/atmos15101160