Convection-Permitting Future Climate Simulations for Bulgaria under the RCP8.5 Scenario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The RegCM Model
2.3. Simulation Set-Up
2.4. Data Sources
2.5. Statistical Indices
3. Results
3.1. Historical Climate Simulations, 1995−2004
3.1.1. Hourly Precipitation Metrics, 2001−2004
3.1.2. Daily Precipitation Metrics for the Historical Period of 1995–2004
3.2. Future Climate Simulations 2089−2098 vs. 1995–2004
3.2.1. Hourly Projection Precipitation Change in 2089−2098 vs. 1995–2004
3.2.2. Daily Projection Precipitation Change in 2089−2098 vs. 1995–2004
3.2.3. Mean and Projected Winter (DJF) Snowfall in 2089–2098 vs. 1995–2004
3.2.4. Mean and Projected Seasonal Mean 2 m Temperature in 2089–2098 vs. 1995–2004
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coppola, E.; Sobolowski, S.; Pichelli, E.; Raffaele, F.; Ahrens, B.; Anders, I.; Ban, N.; Bastin, S.; Belda, M.; Belusic, D.; et al. A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim. Dyn. 2020, 55, 3–34. [Google Scholar] [CrossRef]
- Coppola, E.; Stocchi, P.; Pichelli, E.; Alavez, J.A.T.; Glazer, R.; Giuliani, G.; Di Sante, F.; Nogherotto, R.; Giorgi, F. Non-Hydrostatic RegCM4 (RegCM4-NH): Model description and case studies over multiple domains. Geosci. Model Dev. 2021, 14, 7705–7723. [Google Scholar] [CrossRef]
- Lucas-Picher, P.; Argüeso, D.; Brisson, E.; Tramblay, Y.; Berg, P.; Lemonsu, A.; Kotlarski, S.; Caillaud, C. Convection-permitting modeling with regional climate models: Latest developments and next steps. In Wiley Interdisciplinary Reviews: Climate Change; Wiley Online Library: Hoboken, NJ, USA, 2021; Volume 12, p. e731. [Google Scholar]
- Kendon, E.J.; Ban, N.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Evans, J.P.; Fosser, G.; Wilkinson, J.M. Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Am. Meteorol. Soc. 2017, 98, 79–93. [Google Scholar] [CrossRef]
- Kendon, E.J.; Prein, A.F.; Senior, C.A.; Stirling, A. Challenges and outlook for convection-permitting climate modelling. Philos. Trans. R. Soc. A 2021, 379, 20190547. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed]
- Kendon, E.J.; Roberts, N.M.; Senior, C.A.; Roberts, M.J. Realism of Rainfall in a Very High-Resolution Regional Climate Model. J. Clim. 2012, 25, 5791–5806. [Google Scholar] [CrossRef]
- Déqué, M.; Rowell, D.P.; Lüthi, D.; Giorgi, F.; Christensen, J.H.; Rockel, B.; Jacob, D.; Kjellström, E.; de Castro, M.; Hurk, B.v.D. An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Clim. Chang. 2007, 81, 53–70. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos. 2014, 119, 7889–7907. [Google Scholar] [CrossRef]
- Hewitt, C.D.; Lowe, J.A. Toward a European Climate Prediction System. Bull. Am. Meteorol. Soc. 2018, 99, 1997–2001. [Google Scholar] [CrossRef]
- Ban, N.; Caillaud, C.; Coppola, E.; Pichelli, E.; Sobolowski, S.; Adinolfi, M.; Ahrens, B.; Alias, A.; Anders, I.; Bastin, S.; et al. The first multi-model ensemble of regional climate simulations at the kilometer-scale resolution, part I: Evaluation of precipitation. Clim. Dyn. 2021, 57, 275–302. [Google Scholar] [CrossRef]
- Stocchi, P.; Pichelli, E.; Alavez, J.A.T.; Coppola, E.; Giuliani, G.; Giorgi, F. Non-Hydrostatic Regcm4 (Regcm4-NH): Evaluation of Precipitation Statistics at the Convection-Permitting Scale over Different Domains. Atmosphere 2022, 13, 861. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Suklitsch, M.; Truhetz, H.; Awan, N.K.; Keuler, K.; Georgievski, G. Added value of vonvection permitting seasonal simulations. Clim. Dyn. 2013, 41, 2655–2677. [Google Scholar] [CrossRef]
- Lucas-Picher, P.; Brisson, E.; Caillaud, C.; Alias, A.; Nabat, P.; Lemonsu, A.; Poncet, N.; Hernandez, V.E.C.; Michau, Y.; Doury, A.; et al. Evaluation of the convection-permitting regional climate model CNRM-AROME41t1 over Northwestern Europe. Clim. Dyn. 2023. [Google Scholar] [CrossRef]
- Chan, S.C.; Kendon, E.J.; Fowler, H.J.; Blenkinsop, S.; Roberts, N.M. Projected increases in summer and winter UK sub-daily precipitation extremes from high-resolution regional climate models. Environ. Res. Lett. 2014, 9, 084019. [Google Scholar] [CrossRef]
- Fosser, G.; Khodayar, S.; Berg, P. Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim. Dyn. 2015, 44, 45–60. [Google Scholar] [CrossRef]
- Lind, P.; Lindstedt, D.; Kjellström, E.; Jones, C. Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models. J. Clim. 2016, 29, 3501–3518. [Google Scholar] [CrossRef]
- Adinolfi, M.; Raffa, M.; Reder, A.; Mercogliano, P. Evaluation and Expected Changes of Summer Precipitation at Convection Permitting Scale with COSMO-CLM over Alpine Space. Atmosphere 2020, 12, 54. [Google Scholar] [CrossRef]
- Chan, S.C.; Kendon, E.J.; Berthou, S.; Fosser, G.; Lewis, E.; Fowler, H.J. Europe-wide precipitation projections at convection permitting scale with the Unified Model. Clim. Dyn. 2020, 55, 409–428. [Google Scholar] [CrossRef]
- Berthou, S.; Kendon, E.J.; Chan, S.C.; Ban, N.; Leutwyler, D.; Schär, C.; Fosser, G. Pan-European climate at convection-permitting scale: A model intercomparison study. Clim. Dyn. 2018, 55, 35–59. [Google Scholar] [CrossRef]
- Leutwyler, D.; Lüthi, D.; Ban, N.; Fuhrer, O.; Schär, C. Evaluation of the convection-resolving climate modeling approach on continental scales. J. Geophys. Res. 2017, 122, 5237–5258. [Google Scholar] [CrossRef]
- Kendon, E.J.; Stratton, R.A.; Tucker, S.; Marsham, J.H.; Berthou, S.; Rowell, D.P.; Senior, C.A. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 2019, 10, 1794. [Google Scholar] [CrossRef]
- Liu, C.; Ikeda, K.; Rasmussen, R.; Barlage, M.; Newman, A.J.; Prein, A.F.; Yates, D. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 2016, 49, 71–95. [Google Scholar] [CrossRef]
- Pichelli, E.; Coppola, E.; Sobolowski, S.; Ban, N.; Giorgi, F.; Stocchi, P.; Alias, A.; Belušić, D.; Berthou, S.; Caillaud, C.; et al. The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: Historical and future simulations of precipitation. Clim. Dyn. 2021, 56, 3581–3602. [Google Scholar] [CrossRef]
- Hodnebrog, Ø.; Marelle, L.; Alterskjær, K.; Wood, R.R.; Ludwig, R.; Fischer, E.M.; Richardson, T.B.; Forster, P.M.; Sillmann, J.; Myhre, G. Intensification of summer precipitation with shorter time-scales in Europe. Environ. Res. Lett. 2019, 14, 124050. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.; Castro, C.L.; Dai, A.; Minder, J. Special issue: Advances in convection-permitting climate modeling. Clim. Dyn. 2020, 55, 1–2. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Valcheva, R.; Popov, I.; Gerganov, N. Convection-Permitting Regional Climate Simulation over Bulgaria: Assessment of Precipitation Statistics. Atmosphere 2023, 14, 1249. [Google Scholar] [CrossRef]
- Valcheva, R.; Popov, I.; Gerganov, N. Assessment of precipitation statistics with non-hydrostatic regional climate model RegCM4.7.1 at regional and convection-permitting scale over Bulgaria. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. EGU23-9768. [Google Scholar] [CrossRef]
- Valcheva, R.; Spiridonov, V. Regional climate projections of heavy precipitation over the Balkan Peninsula. IDŐJÁRÁS Q. J. Hung. Meteorol. Serv. 2023, 127, 77–106. [Google Scholar] [CrossRef]
- Peneva, E.; Matov, M.; Tsekov, M. Mediterranean Influence on the Climatic Regime over the Balkan Peninsula from 1901–2021. Climate 2023, 11, 68. [Google Scholar] [CrossRef]
- Kiehl, J.; Hack, J.; Bonan, G.; Boville, B.; Briegleb, B.; Williamson, D.; Rasch, P. Description of the NCAR Community Climate Model (CCM3); NCAR Tech. Note; National Center for Atmospheric Research: Boulder, CO, USA, 1996; Volume NCAR/TN-420+STR, 159p. [Google Scholar]
- Holtslag, A.A.M.; De Bruijn, E.I.F.; Pan, H.-L. A high resolution air mass transformation model for short-range weather forecasting. Mon. Weather. Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Pal, J.S.; Small, E.E.; Eltahir, E.A.B. Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos. 2000, 105, 29579–29594. [Google Scholar] [CrossRef]
- Dickinson, R.; Henderson-Sellers, A.; Kennedy, P. Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model; TechRep; National Center for Atmospheric Research: Boulder, CO, USA, 1993; Volume NCAR/TN-387+STR, 80p. [Google Scholar]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Tech Note NCAR/TN-398 + STR; NCAR: Boulder, CO, USA, 1994. [Google Scholar]
- Valcheva, R.; Popov, I.; Gerganov, N. A sensitivity study of the non-hydrostatic regional climate model RegCM-4.7.1 to physical parametrization schemes over the Balkan peninsula and Bulgaria, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. SGEM 2022, 22, 159–168. [Google Scholar]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Bazile, E.; Abida, R.; Verelle, A.; Le Moigne, P.; Szczypta, C. MESCAN-SURFEX Surface Analysis, Deliverable D2.8 of the UERRA Project. 2017. Available online: http://www.uerra.eu/publications/deliverable-reports.html (accessed on 30 May 2023).
- Soci, C.; Bazile, E.; Besson, F.; Landelius, T. High-resolution precipitation re-analysis system for climatological purposes. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 29879. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Gorooh, V.A.; Shearer, E.J.; Sadeghi, M.; Sorooshian, S.; Hsu, K.; Bolvin, D.; Ralph, M.F. PERSIANN Dynamic Infrared-Rain Rate (PDIR-Now): A Near-real time, Quasi-Global Satellite Precipitation Dataset. J. Hydrometeorol. 2020, 21, 2893–2906. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Clim. 2017, 37, 305–327. [Google Scholar] [CrossRef]
- Bartsotas, N.S.; Anagnostou, E.N.; Nikolopoulos, E.I.; Kallos, G. Investigating Satellite Precipitation Uncertainty over Complex Terrain. J. Geophys. Res. Atmos. 2018, 123, 5346–5359. [Google Scholar] [CrossRef]
- Sarachi, S.; Hsu, K.-L.; Sorooshian, S. A Statistical Model for the Uncertainty Analysis of Satellite Precipitation Products. J. Hydrometeorol. 2015, 16, 2101–2117. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Schär, C.; Ban, N.; Fischer, E.M.; Rajczak, J.; Schmidli, J.; Frei, C.; O’Gorman, P.A. Percentile indices for assessing changes in heavy precipitation events. Clim. Chang. 2016, 137, 201–216. [Google Scholar] [CrossRef]
- Rybka, H.; Haller, M.; Brienen, S.; Brauch, J.; Früh, B.; Junghänel, T.; Lengfeld, K.; Walter, A.; Winterrath, T. Convection-permitting climate simulations with COSMO-CLM for Germany: Analysis of present and future daily and sub-daily extreme precipitation. Meteorol. Z. 2023, 32, 91–111. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett. 2015, 42, 1165–1172. [Google Scholar] [CrossRef]
- Lüthi, S.; Ban, N.; Kotlarski, S.; Steger, C.R.; Jonas, T.; Schär, C. Projections of Alpine Snow-Cover in a High-Resolution Climate Simulation. Atmosphere 2019, 10, 463. [Google Scholar] [CrossRef]
Name/Availability | Spatial Resolution | Temporal Resolution | Data Source and Region | References |
---|---|---|---|---|
MESCAN−SURFEX (1961–2019) | 5.5 × 5.5 km | daily | Surface re-analysis (Europe) | [43,44] |
PERSIANN−PDIR−Now (March 2000–now) | 0.04° × 0.04° | hourly/daily | Satellite (global) | [45] |
Indicators | Description | Units |
---|---|---|
Mean precipitation | Daily mean precipitation. | mm/d |
Frequency | Wet day and hour frequency is defined as a % of the number of wet days/hours per season. | (%) |
Intensity | Wet day and wet hour intensity. | mm/d; mm/h |
Heavy precipitation | Defined as the 99th percentile of all daily precipitation events (p99) and the 99.9th percentile of all hourly precipitation events (p99.9). | mm/d; mm/h |
Bias | Model—observation. | mm/d; mm/h; (%) |
Probability density function of hourly/daily precipitation |
Historical Period | OBS | CPRCM 3 km | RCM 15 km | RCM 15 km—OBS | CPRCM 3 km—OBS |
---|---|---|---|---|---|
MAM—hourly | |||||
INT | 1.25 | 1.1 | 0.79 | −0.46 | −0.15 |
FREQ | 14.49 | 12.49 | 9.47 | −5 | −2 |
P99.9 | 6.43 | 14.75 | 5.66 | −0.79 | 8.33 |
MAM—daily | |||||
Mean PR | 1.99 | 3.31 | 1.75 | −0.23 | 1.32 |
INT | 6.2 | 8.74 | 5.37 | −0.83 | 2.54 |
FREQ | 30.27 | 35.02 | 29.69 | −0.49 | 4.75 |
P99 | 21.6 | 40.67 | 19.21 | −2.37 | 19.07 |
JJA—hourly | |||||
INT | 1.91 | 1.98 | 1.12 | −0.79 | 0.07 |
FREQ | 5.14 | 7.02 | 6.42 | 1.29 | 1.88 |
P99.9 | 7.94 | 20.12 | 5.26 | −2.68 | 12.18 |
JJA—daily | |||||
Mean PR | 2.11 | 3.39 | 1.78 | −0.32 | 1.28 |
INT | 6.71 | 11.71 | 5.79 | −0.92 | 5 |
FREQ | 29.29 | 26.25 | 27.95 | −1.22 | −3.04 |
P99 | 22.66 | 49.89 | 20.03 | −2.58 | 27.24 |
SON—hourly | |||||
INT | 1.64 | 0.92 | 0.77 | −0.88 | −0.73 |
FREQ | 10.39 | 12.29 | 8.43 | −1.97 | 1.89 |
P99.9 | 10.09 | 12.3 | 5.5 | −4.61 | 2.21 |
SON—daily | |||||
Mean PR | 1.91 | 2.93 | 1.76 | −0.15 | 1.02 |
INT | 7.78 | 9.03 | 6.73 | −1.1 | 1.25 |
FREQ | 23.69 | 30.67 | 24.39 | 0.7 | 6.98 |
P99 | 25.49 | 44.05 | 24.19 | −1.34 | 18.55 |
DJF—hourly | |||||
INT | 1.26 | 0.66 | 0.53 | −0.73 | −0.6 |
FREQ | 21.34 | 15.61 | 11.97 | −9.39 | −5.74 |
P99.9 | 8.61 | 7.69 | 4.31 | −4.33 | −0.93 |
DJF—daily | |||||
Mean PR | 1.72 | 2.54 | 1.63 | −0.1 | 0.82 |
INT | 6.38 | 7.1 | 5.06 | −1.32 | 0.72 |
FREQ | 25.51 | 33.56 | 29.79 | 4.25 | 8.05 |
P99 | 21.27 | 30.85 | 18.42 | −2.84 | 9.58 |
2089–2098 | 3 km | 15 km | 3 km | 15 km | 3 km | 15 km | 3 km | 15 km |
---|---|---|---|---|---|---|---|---|
MAM | JJA | SON | DJF | |||||
Hourly | ||||||||
Mean | −1.93 | +2.60 | −30.12 | −31.92 | −17.01 | −19.78 | +19.49 | +13.96 |
INT | +13.86 | +18.11 | +17.48 | +9.76 | +1.97 | +5.2 | +17.43 | +18.44 |
FREQ | −1.75 | −1.21 | −2.99 | −2.65 | −2.26 | −2.14 | +0.54 | −0.19 |
P99.9 | +13.14 | +8.71 | −15.52 | −4.88 | −0.14 | −0.86 | +31.19 | +25.66 |
Daily | ||||||||
Mean | −1.99 | +3.03 | −29.44 | −31.70 | −17.35 | −20.00 | +19.42 | +13.42 |
INT | +11.12 | +13.37 | +13.34 | +7.53 | 3.94 | +7.15 | +22.64 | +1.11 |
FREQ | −4.22 | −2.76 | −10.17 | −11.53 | −6.10 | −6.35 | −0.45 | −1.84 |
P99 | +10.84 | +12.71 | −11.22 | −13.88 | −2.55 | −0.45 | +35.30 | +30.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valcheva, R.; Popov, I.; Gerganov, N. Convection-Permitting Future Climate Simulations for Bulgaria under the RCP8.5 Scenario. Atmosphere 2024, 15, 91. https://doi.org/10.3390/atmos15010091
Valcheva R, Popov I, Gerganov N. Convection-Permitting Future Climate Simulations for Bulgaria under the RCP8.5 Scenario. Atmosphere. 2024; 15(1):91. https://doi.org/10.3390/atmos15010091
Chicago/Turabian StyleValcheva, Rilka, Ivan Popov, and Nikola Gerganov. 2024. "Convection-Permitting Future Climate Simulations for Bulgaria under the RCP8.5 Scenario" Atmosphere 15, no. 1: 91. https://doi.org/10.3390/atmos15010091
APA StyleValcheva, R., Popov, I., & Gerganov, N. (2024). Convection-Permitting Future Climate Simulations for Bulgaria under the RCP8.5 Scenario. Atmosphere, 15(1), 91. https://doi.org/10.3390/atmos15010091