Signs of Slowing Recovery of Antarctic Ozone Hole in Recent Late Winter–Early Spring Seasons (2020–2023)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Models
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chubachi, S. Preliminary result of ozone observations at Syowa from February 1982 to January 1983. Mem. Natl. Inst. Polar Res. 1984, 34, 13–19. [Google Scholar]
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Stolarski, R.S.; Krueger, A.J.; Schoeberl, M.R.; McPeters, R.D.; Newman, P.A.; Alpert, J.C. Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature 1986, 322, 808–811. [Google Scholar] [CrossRef]
- Solomon, S.; Garcia, R.R.; Rowland, F.S.; Wuebbles, D.J. On the depletion of Antarctic ozone. Nature 1986, 321, 755–758. [Google Scholar] [CrossRef]
- Solomon, S. The hole truth. Nature 2004, 427, 289–291. [Google Scholar] [CrossRef] [PubMed]
- The NOAA Ozone Depleting Gas Index. Available online: https://www.esrl.noaa.gov/gmd/odgi (accessed on 1 December 2023).
- WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project, Report No. 58; WMO (World Meteorological Organization): Geneva, Switzerland, 2018; 572p. [Google Scholar]
- WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project, Report No. 278; WMO (World Meteorological Organization): Geneva, Switzerland, 2022; 509p. [Google Scholar]
- NASA Ozone Watch. Images, Data, and Information for Atmospheric Ozone. Available online: https://ozonewatch.gsfc.nasa.gov/ (accessed on 1 December 2023).
- Krzyścin, J. Is the Antarctic ozone hole recovering faster than changing the stratospheric halogen loading? J. Meteorol. Soc. Jpn. 2020, 98, 1083–1091. [Google Scholar] [CrossRef]
- Yang, E.-S.; Cunnold, D.M.; Newchurch, J.; Salawitch, R.J.; McCormick, M.P.; Russell, J.M., III; Zawodny, J.M.; Oltmans, S.J. First stage of Antarctic ozone recovery. J. Geophys. Res. 2008, 113, D20308. [Google Scholar] [CrossRef]
- Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R., III; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Nair, P.J. The signs of Antarctic ozone recovery. Sci. Rep. 2017, 7, 585. [Google Scholar] [CrossRef]
- Strahan, S.E.; Douglass, A.R. Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations. Geophys. Res. Lett. 2018, 45, 382–390. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Kumar, P.; Nair, P.J.; Pandey, P.C. Emergence of ozone recovery evidenced by reduction in the occurrence of Antarctic ozone loss saturation. NPJ Clim. Atmos. Sci. 2018, 1, 42. [Google Scholar] [CrossRef]
- Newman, P.A.; Daniel, J.S.; Waugh, D.W.; Nash, E.R. A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys. 2007, 7, 4537–4552. [Google Scholar] [CrossRef]
- Montzka, S.A.; Dutton, G.; Vimont, I. The NOAA Ozone Depleting Gas Index: Guiding Recovery of the Ozone Layer. Available online: https://gml.noaa.gov/odgi/ (accessed on 1 December 2023).
- Shen, X.; Wang, L.; Osprey, S. The Southern Hemisphere sudden stratospheric warming of September 2019. Sci. Bull. 2020, 65, 1800–1802. [Google Scholar] [CrossRef]
- Ansmann, A.; Ohneiser, K.; Chudnovsky, A.; Knopf, D.A.; Eloranta, E.W.; Villanueva, D.; Seifert, P.; Radenz, M.; Barja, B.; Zamorano, F.; et al. Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke. Atmos. Chem. Phys. 2022, 22, 11701–11726. [Google Scholar] [CrossRef]
- Stone, K.A.; Solomon, S.; Kinnison, D.E.; Mills, M.J. On recent large Antarctic ozone holes and ozone recovery metrics. Gephys. Res. Lett. 2021, 48, e2021GL095232. [Google Scholar] [CrossRef]
- Taha, G.; Loughman, R.; Colarco, P.R.; Zhu, T.; Thomason, L.W.; Jaross, G. Tracking the 2022 Hunga Tonga-Hunga Ha’apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations. Geophys. Res. Lett. 2022, 49, e2022GL100091. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). GES DISC Dataset: MERRA-2 tavg1_2d_slv_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4 (M2T1NXSLV 5.12.4). Available online: https://giovanni.gsfc.nasa.gov/giovanni/#service=TmAvMp&starttime=&endtime=&dataKeyword=M2T1NXSLV%20total%20column%20ozone (accessed on 1 December 2023).
- SBUV Merged Ozone Data Set (MOD), NASA. Daily Merged Overpass Product for Halley Bay Station. Available online: https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/AGGREGATED/sbuv_aggregated_halley.bay_057.txt (accessed on 1 December 2023).
- Earth System Research Laboratory, Global Monitoring Division, NOAA. OMI/OMPS Ozone Time Series Data. Available online: https://www.esrl.noaa.gov/gmd/grad/neubrew/SatO3DataTimeSeries.jsp (accessed on 1 December 2023).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-PLUS, 3rd ed.; Chambers, J., Eddy, W., Härdle, W., Sheather, S., Tierney, L., Eds.; Springer: New York, NY, USA, 1999; p. 501. [Google Scholar]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Baldwin, C.; Ross, H. Beyond a tragic fire season: A window of opportunity to address climate change? Australas. J. Environ. Manag. 2020, 27, 1–5. [Google Scholar] [CrossRef]
- Deb, P.; Moradkhani, H.; Abbaszadeh, P.; Kiem, A.S.; Engström, J.; Keellings, D.; Sharma, A. Causes of the widespread 2019–2020 Australian bushfire season. Earth’s Future 2020, 8, e2020EF001671. [Google Scholar] [CrossRef]
- Kemter, M.; Fischer, M.; Luna, L.V.; Schönfeldt, E.; Vogel, J.; Banerjee, A.; Korup, O.; Thonicke, K. Cascading hazards in the aftermath of Australia’s 2019/2020 Black Summer wildfires. Earth’s Future 2021, 9, e2020EF001884. [Google Scholar] [CrossRef]
- Proud, S.R.; Prata, A.T.; Schmaus, S. The January 2022 eruption of Hunga Tonga Ha’apai volcano reached the mesosphere. Science 2022, 378, 554–557. [Google Scholar] [CrossRef]
- Carn, S.A.; Krotkov, N.A.; Fisher, B.L.; Li, C. Out of the blue: Volcanic SO2 emissions during the 2021–2022 eruptions of Hunga Tonga—Hunga Ha’apai (Tonga). Front. Earth Sci. 2022, 10, 976962. [Google Scholar] [CrossRef]
- Millán, L.; Santee, M.L.; Lambert, A.; Livesey, N.J.; Werner, F.; Schwartz, M.J.; Pumphrey, H.C.; Manney, G.L.; Wang, Y.; Su, H.; et al. The Hunga Tonga-Hunga Ha’apai Hydration of the Stratosphere. Geophys. Res. Lett. 2022, 49, e2022GL099381. [Google Scholar] [CrossRef]
- Bluth, G.J.; Doiron, S.D.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett. 1992, 19, 151–154. [Google Scholar] [CrossRef]
- Evan, S.; Brioude, J.; Rosenlof, K.H.; Gao, R.-S.; Portmann, R.W.; Zhu, Y.; Volkamer, R.; Lee, C.F.; Metzger, J.M.; Lamy, K.; et al. Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga Eruption. Science 2023, 382, eadg2551. [Google Scholar] [CrossRef]
- Kessenich, H.E.; Seppälä, A.; Rodger, C.J. Potential drivers of the recent large Antarctic ozone holes. Nat. Commun. 2023, 14, 7259. [Google Scholar] [CrossRef]
Metrics | Unit | Short Name | Period |
---|---|---|---|
Mean TCO3 in polar cup from MERRA-2 reanalysis | DU | Polar_Cup_MERRA | 1980–2023 |
Mean TCO3 in polar cup from satellite data | DU | Polar_Cup_SAT | 1979–2023 |
Ozone hole area | km2 | Hole_Area | 1979–2023 |
TCO3 minimum in SH | DU | O3_Min | 1979–2023 |
Mass of TCO3 deficit | ton | O3_Deficit | 1980–2023 |
Mass of ozone deficit per 1 km2 area of hole | ton km−2 | O3_Deficit_Dens | 1980–2023 |
Variables | Unit | Short Name | Data Source |
---|---|---|---|
PSC Type 1 (NAT) Volume | km3 | Vol_PSC_NAT | “Volume PSC NAT” subset from https://ozonewatch.gsfc.nasa.gov/meteorology/temp_2023_MERRA2_SH.html |
PSC Type 2 (ICE) Volume | km3 | Vol_PSC_ICE | “Volume ICE” subset from https://ozonewatch.gsfc.nasa.gov/meteorology/temp_2023_MERRA2_SH.html |
Minimum Air Temperature at 50/100 hPa | K | TMIN,50hPa and TMIN,100hPa | “Minimum temperature” subset from https://ozonewatch.gsfc.nasa.gov/meteorology/temp_2023_MERRA2_SH.html |
Metrics (Short Names) | Linear Trends | Trend Coefficient Dimension | |
---|---|---|---|
2000–2019 | 2000–2023 | ||
Polar_Cup_SAT | 2.00 ± 1.37 * | 0.47 ± 1.02 | DU/yr |
Hole_Area | –0.26 ± 0.17 * | –0.08 ± 0.13 | million km2/yr |
O3_Min | 1.40 ± 0.67 ** | 0.36 ± 0.54 | DU/yr |
O3_Deficit | –0.61 ± 0.37 * | –0.20 ± 0.28 | million ton/yr |
O3_Deficit_Den | –0.20 ± 0.10 ** | –0.08 ± 0.08 * | ton km−2/10 yr |
Metrics (Short Names) | Regression Model | R2 |
---|---|---|
Polar_Cup_SAT | 0.92 | |
Hole_Area | 0.89 | |
O3_Min | 0.91 | |
O3_Deficit | 0.88 | |
O3_Deficit_Dens | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyścin, J.; Czerwińska, A. Signs of Slowing Recovery of Antarctic Ozone Hole in Recent Late Winter–Early Spring Seasons (2020–2023). Atmosphere 2024, 15, 80. https://doi.org/10.3390/atmos15010080
Krzyścin J, Czerwińska A. Signs of Slowing Recovery of Antarctic Ozone Hole in Recent Late Winter–Early Spring Seasons (2020–2023). Atmosphere. 2024; 15(1):80. https://doi.org/10.3390/atmos15010080
Chicago/Turabian StyleKrzyścin, Janusz, and Agnieszka Czerwińska. 2024. "Signs of Slowing Recovery of Antarctic Ozone Hole in Recent Late Winter–Early Spring Seasons (2020–2023)" Atmosphere 15, no. 1: 80. https://doi.org/10.3390/atmos15010080
APA StyleKrzyścin, J., & Czerwińska, A. (2024). Signs of Slowing Recovery of Antarctic Ozone Hole in Recent Late Winter–Early Spring Seasons (2020–2023). Atmosphere, 15(1), 80. https://doi.org/10.3390/atmos15010080