Quantifying the Role of Model Internal Year-to-Year Variability in Estimating Anthropogenic Aerosol Radiative Effects
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Modified CAM5 Model and Experiment Setup
2.2. Estimating Methods and Significance Tests
3. Results
3.1. Impacts on Different Components of ERF
3.2. Impacts on the Time Series Trend
3.3. Sensitivity to Simulation Lengths
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawkins, E.; Sutton, R. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bull. Am. Meteorol. Soc. 2009, 90, 1095–1108. [Google Scholar] [CrossRef]
- Notz, D. How well must climate models agree with observations? Philos. Trans. R. Soc. A 2015, 373, 20140164. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Xia, J.; Miao, C.; Sun, Q. The uncertainty in climate change projections by global climate models. Chin. J. Nat. 2016, 38, 182–188. [Google Scholar]
- Stouffer, R.J.; Eyring, V.; Meehl, G.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 scientific gaps and recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2016, 98, 95–105. [Google Scholar] [CrossRef]
- Cheung, A.H.; Mann, M.E.; Steinman, B.A.; Frankcombe, L.M.; England, M.H.; Miller, S.K. Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations. J. Clim. 2017, 30, 4763–4776. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Forest, C.E.; Pollard, D. Assessing the contribution of internal climate variability to anthropogenic changes in ice sheet volume. Geophys. Res. Lett. 2017, 44, 6261–6268. [Google Scholar] [CrossRef]
- Lehner, F.; Deser, C.; Maher, N.; Marotzke, J.; Fischer, E.M.; Brunner, L.; Knutti, R.; Hawkins, E. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 2020, 11, 491–508. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Frankcombe, L.M.; England, M.H.; Mann, M.E.; Steinman, B.A. Separating Internal Variability from the Externally Forced Climate Response. J. Clim. 2015, 28, 8184–8202. [Google Scholar] [CrossRef]
- Eghdamirad, S.; Johnson, F.; Woldemeskel, F.; Sharma, A. Quantifying the sources of uncertainty in upper air climate variables. J. Geophys. Res. Atmos. 2016, 121, 3859–3874. [Google Scholar] [CrossRef]
- Payne, M.R.; Barange, M.; Cheung, W.W.L.; MacKenzie, B.R.; Batchelder, H.P.; Cormon, X.; Eddy, T.D.; Fernandes, J.A.; Hollowed, A.B.; Jones, M.C.; et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 2015, 73, 1272–1282. [Google Scholar] [CrossRef]
- Dong, L.; McPhaden, M.J. The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales. Environ. Res. Lett. 2017, 12, 034011. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, J.; Zhang, W.; Chen, Z. The Sources of Uncertainty in the Projection of Global Land Monsoon Precipitation. Geophys. Res. Lett. 2020, 47, e2020GL088415. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Martel, J.L.; Brissette, F.P.; Zhang, X.J.; Frei, A. Relative Importance of Internal Climate Variability versus Anthropogenic Climate Change in Global Climate Change. J. Clim. 2021, 34, 465–478. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, C.; Fan, X.; Gou, J.; Zhang, Q.; Zheng, H. Quantifying the Uncertainty Sources of Future Climate Projections and Narrowing Uncertainties With Bias Correction Techniques. Earth’s Future 2022, 10, e2022EF002963. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.S. A range of outcomes: The combined effects of internal variability and anthropogenic forcing on regional climate trends over Europe. Nonlinear Process. Geophys. 2023, 30, 63–84. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Sanchez, K.J.; Roberts, G.C.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O’Dowd, C.; et al. Top-down and bottom-up aerosol–cloud closure: Towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmos. Chem. Phys. 2017, 17, 9797–9814. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I. Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability? Clim. Dyn. 2019, 52, 3553–3573. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.; Bourdette, V.; Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 2012, 38, 527–546. [Google Scholar] [CrossRef]
- Ji, D.F.; Liu, L.; Li, L.J.; Sun, C.; Yu, X.Z.; Li, R.Z.; Zhang, C.; Wang, B. Uncertainties in the simulation of 1.5 °C and 2 °C warming threshold-crossing time arising from model internal variability based on CMIP5 models. Clim. Chang. Res. 2019, 15, 343–351. [Google Scholar] [CrossRef]
- Chtirkova, B.; Folini, D.; Correa, L.F.; Wild, M. Internal Variability of All-Sky and Clear-Sky Surface Solar Radiation on Decadal Timescales. J. Geophys. Res. Atmos. 2022, 127, e2021JD036332. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Barnes, E.A.; Deser, C.; Foust, W.E.; Phillips, A.S. Quantifying the Role of Internal Climate Variability in Future Climate Trends. J. Clim. 2015, 28, 6443–6456. [Google Scholar] [CrossRef]
- Dai, A.; Bloecker, C. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 2019, 52, 289–306. [Google Scholar] [CrossRef]
- Wei, M.; Qiao, F.; Guo, Y.; Deng, J.; Song, Z.; Shu, Q.; Yang, X. Quantifying the importance of interannual, interdecadal and multidecadal climate natural variabilities in the modulation of global warming rates. Clim. Dyn. 2019, 53, 6715–6727. [Google Scholar] [CrossRef]
- Koenigk, T.; Bärring, L.; Matei, D.; Nikulin, G.; Strandberg, G.; Tyrlis, E.; Wang, S.; Wilcke, R.A.I. On the contribution of internal climate variability to European future climate trends. Tellus A 2020, 72, 1788901. [Google Scholar] [CrossRef]
- Maher, N.; Lehner, F.; Marotzke, J. Quantifying the role of internal variability in the temperature we expect to observe in the coming decades. Environ. Res. Lett. 2020, 15, 054014. [Google Scholar] [CrossRef]
- Hingray, B.; Saïd, M. Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections. J. Clim. 2014, 27, 6779–6798. [Google Scholar] [CrossRef]
- Marotzke, J.; Forster, P.M. Forcing, feedback and internal variability in global temperature trends. Nature 2015, 517, 565–570. [Google Scholar] [CrossRef]
- Kumar, D.; Ganguly, A.R. Intercomparison of model response and internal variability across climate model ensembles. Clim. Dyn. 2018, 51, 207–219. [Google Scholar] [CrossRef]
- McKinnon, K.A.; Deser, C. Internal Variability and Regional Climate Trends in an Observational Large Ensemble. J. Clim. 2018, 31, 6783–6802. [Google Scholar] [CrossRef]
- von Trentini, F.; Aalbers, E.E.; Fischer, E.M.; Ludwig, R. Comparing interannual variability in three regional single-model initial-condition large ensembles (SMILEs) over Europe. Earth Syst. Dyn. 2020, 11, 1013–1031. [Google Scholar] [CrossRef]
- Blanusa, M.L.; López-Zurita, C.J.; Rasp, S. Internal variability plays a dominant role in global climate projections of temperature and precipitation extremes. Clim. Dyn. 2023, 61, 1931–1945. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Zhang, X.J. Reliability of simulating internal precipitation variability over multi-timescales using multiple global climate model large ensembles in China. Int. J. Climatol. 2023, 43, 6383–6401. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Xu, C.Y.; Kim, J.S.; Chen, H.; Xia, J.; Zhang, L. The contribution of internal climate variability to climate change impacts on droughts. Sci. Total Environ. 2019, 684, 229–246. [Google Scholar] [CrossRef]
- Qian, B.; Jing, Q.; Smith, W.; Grant, B.; Cannon, A.; Zhang, X. Quantifying the uncertainty introduced by internal climate variability in projections of Canadian crop production. Environ. Res. Lett. 2020, 15, 074032. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, X. Quantifying the uncertainty of internal variability in future projections of seasonal soil moisture droughts over China. Sci. Total Environ. 2022, 824, 153817. [Google Scholar] [CrossRef]
- Zhuan, M.; Chen, J.; Xu, C.Y.; Zhao, C.; Xiong, L.; Liu, P. A method for investigating the relative importance of three components in overall uncertainty of climate projections. Int. J. Climatol. 2018, 39, 1853–1871. [Google Scholar] [CrossRef]
- Deser, C. Certain Uncertainty: The Role of Internal Climate Variability in Projections of Regional Climate Change and Risk Management. Earth’s Future 2020, 8, e2020EF001854. [Google Scholar] [CrossRef]
- Mankin, J.S.; Lehner, F.; Coats, S.; McKinnon, K.A. The Value of Initial Condition Large Ensembles to Robust Adaptation Decision-Making. Earth’s Future 2020, 8, e2012EF001610. [Google Scholar] [CrossRef]
- Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J.M.; Irvine, P.J.; Jones, A.; Lawrence, M.G.; MacCracken, M.; Muri, H.; et al. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results. Geosci. Model Dev. 2015, 8, 3379–3392. [Google Scholar] [CrossRef]
- Pincus, R.; Forster, P.; Stevens, B. The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental Protocol for CMIP6. Geosci. Model Dev. 2016, 9, 3447–3460. [Google Scholar] [CrossRef]
- Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; et al. Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 817–922. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Efficacy of climate forcings. J. Geophys. Res. Atmos. 2005, 110, D18104. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 571–658. [Google Scholar] [CrossRef]
- Ghan, S. Technical Note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys. Discuss. 2013, 13, 9971–9974. [Google Scholar] [CrossRef]
- Myhre, G.; Samset, B.H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 2013, 13, 1853–1877. [Google Scholar] [CrossRef]
- Forster, P.; Richardson, T.; Maycock, A.; Smith, C.; Samset, B.H.; Myhre, G.; Andrews, T.; Pincus, R.; Schulz, M. Recommendations for diagnosing effective radiative forcing from climate models for CMIP6: Recommended Effective Radiative Forcing. J. Geophys. Res. Atmos. 2016, 121, 12460–12475. [Google Scholar] [CrossRef]
- Fiedler, S.; Stevens, B.; Mauritsen, T. On the sensitivity of anthropogenic aerosol forcing to model-internal variability and parameterizing a Twomey effect. J. Adv. Model. Earth Syst. 2017, 9, 1325–1341. [Google Scholar] [CrossRef]
- Shindell, D.T.; Lamarque, J.F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P.J.; Lee, Y.H.; Rotstayn, L.; Mahowald, N.; et al. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys. 2013, 13, 2939–2974. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef]
- McCoy, D.; Bender, F.; Mohrmann, J.; Hartmann, D.; Wood, R.; Grosvenor, D. The global aerosol-cloud first indirect effect estimated using MODIS, MERRA and AeroCom: MODIS-MERRA Indirect Effect. J. Geophys. Res. Atmos. 2017, 122, 1779–1796. [Google Scholar] [CrossRef]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.; Christensen, M.; Daniau, A.L.; et al. Bounding Global Aerosol Radiative Forcing of Climate Change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Fiedler, S.; Kinne, S.; Huang, W.T.K.; Räisänen, P.; O’Donnell, D.; Bellouin, N.; Stier, P.; Merikanto, J.; van Noije, T.; Makkonen, R.; et al. Anthropogenic aerosol forcing—Insights from multiple estimates from aerosol-climate models with reduced complexity. Atmos. Chem. Phys. 2019, 19, 6821–6841. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, W.; Liu, J. Comparison of Anthropogenic Aerosol Climate Effects among Three Climate Models with Reduced Complexity. Atmosphere 2019, 10, 456. [Google Scholar] [CrossRef]
- Boucher, O.; Lohmann, U. The sulfate–CCN–cloud albedo effect: A sensitivity study with two general circulation models. Tellus 1995, 47, 281–300. [Google Scholar] [CrossRef]
- Kinne, S. Aerosol radiative effects with MACv2. Atmos. Chem. Phys. 2019, 19, 10919–10959. [Google Scholar] [CrossRef]
- Stevens, B.; Fiedler, S.; Kinne, S.; Peters, K.; Rast, S.; Musse, J.; Smith, S.J.; Mauritsen, T. MACv2-SP: A parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6. Geosci. Model Dev. 2017, 10, 433–452. [Google Scholar] [CrossRef]
- Neale, R.B.; Gettelman, A.; Park, S.; Chen, C.C.; Lauritzen, P.H.; Williamson, D.L.; Conley, A.J.; Kinnison, D.; Marsh, D.; Smith, A.K.; et al. Description of the NCAR Community Atmosphere Model (CAM 5.0); NCAR/TN-486+STR; NSF: Alexandria, VA, USA, 2012. [Google Scholar] [CrossRef]
- Morrison, H.; Gettelman, A. A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and Numerical Tests. J. Clim. 2008, 21, 3642–3659. [Google Scholar] [CrossRef]
- Gettelman, A.; Morrison, H. Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with Other Schemes. J. Clim. 2015, 28, 1268–1287. [Google Scholar] [CrossRef]
- Ghan, S.J.; Liu, X.; Easter, R.C.; Zaveri, R.; Rasch, P.J.; Yoon, J.H.; Eaton, B. Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing. J. Clim. 2012, 25, 6461–6476. [Google Scholar] [CrossRef]
- Liu, X.; Easter, R.C.; Ghan, S.J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.F.; Gettelman, A.; Morrison, H.; Vitt, F.; et al. Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev. 2012, 5, 709–739. [Google Scholar] [CrossRef]
- Iacono, M.; Delamere, J.; Mlawer, E.; Shephard, M.; Clough, S.; Collins, W. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Shi, X.; Li, C.; Li, L.; Zhang, W.; Liu, J. Estimating the CMIP6 Anthropogenic Aerosol Radiative Effects with the Advantage of Prescribed Aerosol Forcing. Atmosphere 2021, 12, 406. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef]
Names | Description |
---|---|
Fari,aci | The default shortwave net radiative fluxes, considering the anthropogenic aerosol direct radiative effect and Twomey effect |
Faci | Similar to Fari,aci, but excluding the anthropogenic aerosol direct radiative effect |
Fari | Similar to Fari,aci, but excluding the anthropogenic aerosol Twomey effect |
F | Similar to Fari,aci, but excluding the anthropogenic aerosol effects |
RFari | Anthropogenic aerosol instantaneous radiative forcing from the direct radiative effect, RFari = Fari,aci − Faci, RFari = Fari − F |
RFaci | Anthropogenic aerosol instantaneous radiative forcing from the Twomey effect, RFaci = Fari,aci − Fari, RFaci = Faci− F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Zeng, Y. Quantifying the Role of Model Internal Year-to-Year Variability in Estimating Anthropogenic Aerosol Radiative Effects. Atmosphere 2024, 15, 79. https://doi.org/10.3390/atmos15010079
Shi X, Zeng Y. Quantifying the Role of Model Internal Year-to-Year Variability in Estimating Anthropogenic Aerosol Radiative Effects. Atmosphere. 2024; 15(1):79. https://doi.org/10.3390/atmos15010079
Chicago/Turabian StyleShi, Xiangjun, and Yuxi Zeng. 2024. "Quantifying the Role of Model Internal Year-to-Year Variability in Estimating Anthropogenic Aerosol Radiative Effects" Atmosphere 15, no. 1: 79. https://doi.org/10.3390/atmos15010079
APA StyleShi, X., & Zeng, Y. (2024). Quantifying the Role of Model Internal Year-to-Year Variability in Estimating Anthropogenic Aerosol Radiative Effects. Atmosphere, 15(1), 79. https://doi.org/10.3390/atmos15010079