The Impact of an Oceanic Mesoscale Anticyclonic Eddy in the East China Sea on the Tropical Cyclone Yagi (2018)
Abstract
:1. Introduction
2. Data and Numerical Model
2.1. Data
2.2. The Numerical Model
3. Impact of the Eddy on the Strength of TC Yagi
3.1. Overview of TC Yagi
3.2. Development of Yagi near the Eddy Based on Observational Data
3.3. Impact of the Eddy on Yagi in Numerical Experiments
4. The Influence of Yagi on the Generation of Tornadoes
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, J.L.; Qian, T.T.; Klotzbach, P. Tropical Cyclones. Atmos.-Ocean 2022, 60, 360–398. [Google Scholar] [CrossRef]
- Dvorak, V.F. Tropical Cyclone Intensity Analysis Using Satellite Data; US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service: Washington, DC, USA, 1984; p. 11. [Google Scholar]
- Montgomery, M.T.; Farrell, B.F. Tropical cyclone formation. J. Atmos. Sci. 1993, 50, 285–310. [Google Scholar] [CrossRef]
- Sobel, A.H.; Camargo, S.J.; Hall, T.M.; Lee, C.Y.; Tippett, M.K.; Wing, A.A. Human influence on tropical cyclone intensity. Science 2016, 353, 242–246. [Google Scholar] [CrossRef] [PubMed]
- NOAA National Centers for Environmental Information (NCEI). State of the Climate: Hurricanes and Tropical Storms for Annual 2017. 2018. Available online: https://www.ncdc.noaa.gov/sotc/tropical-cyclones/201713 (accessed on 6 October 2022).
- Wang, H.; Xu, M.; Onyejuruwa, A.; Wang, Y.; Wen, S.; Gao, A.E.; Li, Y. Tropical cyclone damages in Mainland China over 2005–2016: Losses analysis and implications. Environ. Dev. Sustain. 2019, 21, 3077–3092. [Google Scholar] [CrossRef]
- Chang, C.P.; Liu, C.H.; Kuo, H.C. Typhoon Vamei: An equatorial tropical cyclone formation. Geophys. Res. Lett. 2003, 30, 1150. [Google Scholar] [CrossRef]
- Charney, J.G.; Eliassen, A. On the growth of the hurricane depression. J. Atmos. Sci. 1964, 21, 68–75. [Google Scholar] [CrossRef]
- Craig, G.C.; Gray, S.L. CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci. 1996, 53, 3528–3540. [Google Scholar] [CrossRef]
- Palmen, E. On the formation and structure of tropical hurricanes. Geophysica 1948, 3, 26–38. [Google Scholar]
- Malkus, J.S.; Riehl, H. On the dynamics and energy transformations in steady-state hurricanes. Tellus 1960, 12, 1–20. [Google Scholar] [CrossRef]
- Chan, J.C.; Duan, Y.; Shay, L.K. Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci. 2001, 58, 154–172. [Google Scholar] [CrossRef]
- Leipper, D.F. Observed ocean conditions and Hurricane Hilda. J. Atmos. Sci. 1967, 24, 182–186. [Google Scholar] [CrossRef]
- Lin, I.I.; Liu, W.T.; Wu, C.C.; Chiang, J.C.; Sui, C.H. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett. 2003, 30, 1131. [Google Scholar] [CrossRef]
- Lin, I.I.; Wu, C.C.; Emanuel, K.A.; Lee, I.H.; Wu, C.R.; Pun, I.F. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Weather Rev. 2005, 133, 2635–2649. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, Y.; Pan, X.; Hu, Y.; Chen, S.; Li, W. Precipitation microphysics of tropical cyclones over Northeast China in 2020. Remote Sens. 2022, 14, 2188. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Chen, S.; Li, W.; Zhang, A. Mechanisms of the transport height of water vapor by tropical cyclones on heavy rainfall. Weather Clim. Extrem. 2023, 41, 100587. [Google Scholar] [CrossRef]
- Emanuel, K.; Nolan, D.S. Tropical cyclone activity and the global climate system. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorolgy, Miami, FL, USA, 3–7 May 2004; Volume 10, pp. 240–241. [Google Scholar]
- Wu, C.C.; Lee, C.Y.; Lin, I.I. The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci. 2007, 64, 3562–3578. [Google Scholar] [CrossRef]
- Leipper, D.F.; Volgenau, D. Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr. 1972, 2, 218–224. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. Ocean. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef]
- Zambon, J.B.; He, R.; Warner, J.C. Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn. 2014, 64, 1535–1554. [Google Scholar] [CrossRef]
- Ricchi, A.; Miglietta, M.M.; Falco, P.P.; Benetazzo, A.; Bonaldo, D.; Bergamasco, A.; Sclavo, M.; Carniel, S. On the use of a coupled ocean–atmosphere–wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos. Res. 2016, 172, 48–65. [Google Scholar] [CrossRef]
- Meroni, A.N.; Parodi, A.; Pasquero, C. Role of SST patterns on surface wind modulation of a heavy midlatitude precipitation event. J. Geophys. Res. Atmos. 2018, 123, 9081–9096. [Google Scholar] [CrossRef]
- Ricchi, A.; Sangelantoni, L.; Redaelli, G.; Mazzarella, V.; Montopoli, M.; Miglietta, M.M.; Tiesi, A.; Mazzà, S.; Rotunno, R.; Ferretti, R. Impact of the SST and topography on the development of a large-hail storm event, on the Adriatic Sea. Atmos. Res. 2023, 296, 107078. [Google Scholar] [CrossRef]
- Bao, J.W.; Wilczak, J.M.; Choi, J.K.; Kantha, L.H. Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Weather Rev. 2000, 128, 2190–2210. [Google Scholar] [CrossRef]
- Jaimes, B.; Shay, L.K. Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Weather Rev. 2009, 137, 4188–4207. [Google Scholar] [CrossRef]
- Liu, G.P.; Hu, J.Y. The response of mesoscale eddies in the South China Sea to tropical cyclones: A case study. J. Oceanogr. Taiwan Strait 2009, 28, 8. [Google Scholar]
- Jangir, B.; Swain, D.; Ghose, S.K. Influence of eddies and tropical cyclone heat potential on intensity changes of tropical cyclones in the North Indian Ocean. Adv. Space Res. 2021, 68, 773–786. [Google Scholar] [CrossRef]
- Zhan, W.; He, Q.; Zhang, Y.; Zhan, H. Anticyclone Eddies Favor the Genesis of Off-Season Tropical Cyclone in the Western North Pacific. J. Geophys. Res. Atmos. 2023, 128, e2022JD036945. [Google Scholar] [CrossRef]
- Edwards, R. Tropical cyclone tornadoes: A review of knowledge in research and prediction. E-J. Sev. Storms Meteorol. 2012, 7, 1–61. [Google Scholar] [CrossRef]
- Novlan, D.J.; Gray, W.M. Hurricane-spawned tornadoes. Mon. Weather Rev. 1974, 102, 476–488. [Google Scholar] [CrossRef]
- Bai, L.; Meng, Z.; Sueki, K.; Chen, G.; Zhou, R. Climatology of tropical cyclone tornadoes in China from 2006 to 2018. Sci. China Earth Sci. 2020, 63, 37–51. [Google Scholar] [CrossRef]
- Zhu, J.J.; Cai, K.L.; Gong, D.L.; Liu, Y.; Wang, S.F.; Jin, W.F. Disaster investigation and weather radar identification of tornadoes in Shandong caused by landfalling Typhoon YAGI (2018). J. Mar. Meteorol. 2019, 39, 21–34. (In Chinese) [Google Scholar]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Lu, X.; Yu, H.; Ying, M.; Zhao, B.; Zhang, S.; Lin, L.; Bai, L.N.; Wan, R. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1940 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS); 14 June 2018; Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 18 August 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on pressure levels from 1940 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS); 14 June 2018; Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (accessed on 18 August 2022).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar]
- Thiébaux, J.; Rogers, E.; Wang, W.; Katz, B. A new high-resolution blended real-time global sea surface temperature analysis. Bull. Am. Meteorol. Soc. 2003, 84, 645–656. [Google Scholar] [CrossRef]
- Tao, W.; Joanne, S.; Michael, M. An Ice–Water Saturation Adjustment. Mon. Weather Rev. 1989, 117, 231–235. [Google Scholar] [CrossRef]
- Tao, W.; Wu, D.; Lang, S.; Chern, J.; Peters-Lidard, C.; Fridlind, A.; Matsui, T. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and obser- vations. J. Geophys. Res. Atmos. 2016, 121, 1278–1305. [Google Scholar] [CrossRef]
- Pleim, J.E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; Lemone, A.; Mitchell, E.; Ek, M.B.; Gayno, G.A.; Węgiel, W.; Cuenca, R.H. Implementation and verification of the unified Noah land-surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 14 January 2004. [Google Scholar]
- Park, S.; Bretherton, C.S. The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Clim. 2009, 22, 3449–3469. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, S.; Xie, S.; Chen, Y.; Liu, H. Effects of a Cold Ocean Eddy on Local Atmospheric Boundary Layer Near the Kuroshio Extension: In Situ Observations and Model Experiments. J. Geophys. Res. Atmos. 2019, 124, 5779–5790. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.P.; Xie, S.P.; Norris, J.R.; Sun, J.X.; Jiang, Y.X. Observed variations of the atmospheric boundary layer and stratocumulus over a warm eddy in the Kuroshio Extension. Mon. Weather Rev. 2019, 147, 1581–1591. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, S.; Nowotarski, C.J.; Jiang, Y. Atmospheric Responses to Mesoscale Oceanic Eddies in the Winter and Summer North Pacific Subtropical Countercurrent Region. Atmosphere 2020, 11, 816. [Google Scholar] [CrossRef]
- Heymsfield, G.M.; Halverson, J.B.; Simpson, J.; Tian, L.; Bui, T.P. ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteorol. 2001, 40, 1310–1330. [Google Scholar] [CrossRef]
- Zhang, D.L.; Chen, H. Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett. 2012, 39, L02806. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H. The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Trop. Cyclone Res. Rev. 2013, 2, 65–80. [Google Scholar]
- Potter, S. Fine-tuning fujita. Weatherwise 2007, 60, 64–71. [Google Scholar] [CrossRef]
- McCaul, E.W., Jr. Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Weather Rev. 1991, 119, 1954–1978. [Google Scholar] [CrossRef]
- Davies-Jones, R. Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci. 1984, 41, 2991–3006. [Google Scholar] [CrossRef]
- Sueki, K.; Niino, H. Toward better assessment of tornado potential in typhoons: Significance of considering entrainment effects for CAPE. Geophys. Res. Lett. 2016, 43, 12–597. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mazon, J.; Motola, V.; Pasini, A. Effect of a positive sea surface temperature anomaly on a Mediterranean tornadic supercell. Sci. Rep. 2017, 7, 12828. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Liu, F.F.; Zhang, H.J. Advances in Tornado Research in China. Meteorol. Mon. 2021, 47, 1319–1335. (In Chinese) [Google Scholar]
Parameters | Grid 1 | Grid 2 |
---|---|---|
Grid spacing (km) | 30 | 10 |
Grids | 130 × 130 | 298 × 298 |
Center location | 123° E, 35° N | |
Number of vertical layers | 33 | |
Time interval (hour) | 3 | |
Micro physics options | Goddard Scheme [42,43] | |
Planetary boundary layer physics options | Asymmetric Convection Model 2 Scheme [44] | |
Cumulus parameterization options | Grell–Freitas Ensemble Scheme [45] | |
Shortwave options | Dudhia Shortwave Scheme [46] | |
Longwave options | RRTM Longwave Scheme [47] | |
Land surface options | Unified Noah Land Surface Model [48] | |
Shallow cumulus options | University of Washington Scheme [49] | |
Surface layer options | Revised MM5 Scheme [50] | |
SST update | on |
Time (UTC) | Location | EF Scale | The Direction and Distance from the TC Center |
---|---|---|---|
14:30 13 August | 117.81° E, 34.21° N | 0~1 | 57°, 160 km |
15:15 13 August | 117.44° E, 34.52° N | 0~1 | 50°, 153 km |
16:25 13 August | 117.62° E, 34.48° N | 0~1 | 60°, 155 km |
01:45 14 August | 119.44° E, 37.03° N | 0~1 | 65°, 290 km |
02:30 14 August | 120.12° E, 37.38° N | 0~1 | 68°, 365 km |
02:40 14 August | 119.08° E, 37.88° N | 0~1 | 52°, 308 km |
04:10 14 August | 117.50° E, 37.25° N | 1~2 | 40°, 125 km |
05:10 14 August | 117.40° E, 37.53° N | 0~1 | 35°, 114 km |
05:20 14 August | 118.44° E, 37.68° N | 0~1 | 55°, 190 km |
05:50 14 August | 117.36° E, 37.67° N | 0~1 | 32°, 99 km |
06:00 14 August | 118.47° E, 37.86° N | 0 | 55°, 183 km |
06:45 14 August | 117.77° E, 37.51° N | 0~1 | 54°, 110 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Si, J.; Cai, J.; Chen, G.; Wang, K.; Li, H.; Yang, D. The Impact of an Oceanic Mesoscale Anticyclonic Eddy in the East China Sea on the Tropical Cyclone Yagi (2018). Atmosphere 2024, 15, 81. https://doi.org/10.3390/atmos15010081
Sun J, Si J, Cai J, Chen G, Wang K, Li H, Yang D. The Impact of an Oceanic Mesoscale Anticyclonic Eddy in the East China Sea on the Tropical Cyclone Yagi (2018). Atmosphere. 2024; 15(1):81. https://doi.org/10.3390/atmos15010081
Chicago/Turabian StyleSun, Jianxiang, Jia Si, Junhua Cai, Guangcan Chen, Kaiyue Wang, Huan Li, and Dongren Yang. 2024. "The Impact of an Oceanic Mesoscale Anticyclonic Eddy in the East China Sea on the Tropical Cyclone Yagi (2018)" Atmosphere 15, no. 1: 81. https://doi.org/10.3390/atmos15010081
APA StyleSun, J., Si, J., Cai, J., Chen, G., Wang, K., Li, H., & Yang, D. (2024). The Impact of an Oceanic Mesoscale Anticyclonic Eddy in the East China Sea on the Tropical Cyclone Yagi (2018). Atmosphere, 15(1), 81. https://doi.org/10.3390/atmos15010081