On the Precursor Environments to Mountain Lee Wave Clouds in Central Iberia under CMIP6 Projections
Abstract
:1. Introduction
2. Datasets and Methodology
- Wind direction between 256° (95th percentile, p95) and 016° (5th percentile, p5).
- Wind speed greater than 5.6 m/s (p5).
- Relative humidity higher than 5% (p5).
3. Results and Discussion
3.1. Historical and Future Scenario Wave Cloud Precursor Environments Characterization
3.2. Trends in Wave Cloud Precursor Environments
4. Conclusions
- Events with wave cloud precursor environments are defined based on wind direction (256° − 016°), wind speed (>5.6 m/s), and relative humidity (>4.7%) thresholds from the ERA5 dataset. Based on them, an average of 11 events per year are identified for EC-EARTH3S5-8.5 and MPI-ESM1.2-HRS5-8.5, and 9 events for MRI-ESM2.0S5-8.5. However, no statistically significant trends in the occurrence of these events are found in any dataset.
- For the S5-8.5 period, the geopotential height composites at 500 and 700 hPa for the wave cloud precursor environments detected in the three datasets show an increase in zonal winds. Expansion of the Azores High towards the Iberian Peninsula and shorter troughs than the ERA5 and HIST period are noted, with these differences being more pronounced for the EC-EARTH3 dataset. Furthermore, the EC-EARTH3HIST synoptic pattern composite is the most like ERA5.
- Wind rose distributions display a prevailing northwestern wind direction in all datasets, with statistically significant differences between them. The EC-EARTH3S5-8.5 wind speed is greater than the EC-EARTH3HIST wind speed. The relative humidity significantly differs among the EC-EARTH3 datasets, showing lower relative humidity for the EC-EARTH3S5-8.5. Otherwise, there are no significant differences between ENSHIST and ENSS5-8.5.
- The EC-EARTH3 is the most adequate GCM for forecasting the future behavior of wave cloud precursor environments because the historical data for the selected atmospheric variables are closer to the reference data (ERA5). Moreover, there are statistically significant differences between EC-EARTH3HIST and EC-EARTH3S5-8.5 in all variables studied, contrary to the other GCMs and the ENS.
- Icing precursor environments connected with mountain lee wave clouds at 700 hPa in the study domain are expected to decrease in the future, since the temperature median value in EC-EARTH3S5-8.5 is 2.8 °C higher than in EC-EARTH3HIST.
- According to geopotential height composites and other relevant climate studies, zonal wind trends show a significant increasing tendency (over 4 m/s) windward of the Guadarrama mountain range under the predominant wind direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buck, R. Aircraft Icing Handbook; Safety Education and Publishing Unit: Hong Kong, 2000. [Google Scholar]
- Bolgiani, P.; Fernández-González, S.; Martin, M.L.; Valero, F.; Merino, A.; García-Ortega, E.; Sánchez, J.L. Analysis and numerical simulation of an aircraft icing episode near Adolfo Suárez Madrid-Barajas International Airport. Atmos. Res. 2018, 200, 60–69. [Google Scholar] [CrossRef]
- European Union Aviation Safety Agency. Annual Safety Review; European Union Aviation Safety Agency (EASA): Cologne, Germany, 2022. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Elsevier: Amsterdam, The Netherlands, 2006; Volume 92. [Google Scholar]
- Geresdi, I.; Rasmussen, R. Freezing drizzle formation in stably stratified layer clouds. Part II: The role of giant nuclei and aerosol particle size distribution and solubility. J. Atmos. Sci. 2005, 62, 2037–2057. [Google Scholar] [CrossRef]
- Moran, J.M. Meteorology: The Atmosphere and the Science of Weather, 5th ed.; Prentice-Hall: Hoboken, NJ, USA, 1996; ISBN 9780023838415. [Google Scholar]
- Gent, R.W.; Dart, N.P.; Cansdale, J.T. Aircraft icing. Philosophical Transactions of the Royal Society of London. Series A: Mathematical. Phys. Eng. Sci. 2000, 358, 2873–2911. [Google Scholar] [CrossRef]
- Lankford, T.T. Aircraft Icing: A Pilot’s Guide; McGraw Hill Professional: New York, NY, USA, 2000. [Google Scholar]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Lin, Y.L. Mesoscale Dynamics; Cambridge University Press: Cambridge, UK, 2007; Volume 630. [Google Scholar]
- Scorer, R.S. Theory of waves in the lee of mountains. Q. J. R. Meteorol. Soc. 1949, 75, 41–56. [Google Scholar] [CrossRef]
- Nína, G.P.; Jón Kristjánsson, E.; Ólafsson, H. The effect of upstream wind direction on atmospheric flow in the vicinity of a large mountain. Q. J. R. Meteorol. Soc. 2005, 131, 1113–1128. [Google Scholar]
- Díaz-Fernández, J.; Bolgiani, P.; Santos-Muñoz, D.; Sastre, M.; Valero, F.; Sebastián-Martín, L.I.; Martín, M.L. On the characterization of mountain waves and the development of a warning method for aviation safety using WRF forecast. Atmos. Res. 2021, 258, 105620. [Google Scholar] [CrossRef]
- Broutman, D.; Rottman, J.W.; Eckermann, S.D. A hybrid method for wave propagation from a localized source, with application to mountain waves. Q. J. R. Meteorol. Soc. 2001, 127, 129–146. [Google Scholar] [CrossRef]
- Smith, R.B.; Skubis, S.; Doyle, J.D.; Broad, A.S.; Kiemle, C.; Volkert, H. Mountain waves over Mont Blanc: Influence of a stagnant boundary layer. J. Atmos. Sci. 2002, 59, 2073–2092. [Google Scholar] [CrossRef]
- Díaz-Fernández, J.; Bolgiani, P.; Santos-Muñoz, D.; Quitián-Hernández, L.; Sastre, M.; Valero, F.; Martín, M. Comparison of the WRF and HARMONIE models ability for mountain wave warnings. Atmos. Res. 2022, 265, 105890. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; McAvaney, B.; Latif, M.; Stouffer, R.J. Overview of the coupled model intercomparison project. Bull. Am. Meteorol. Soc. 2005, 86, 89–93. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. Discuss. 2015, 8. [Google Scholar] [CrossRef]
- Koenigk, T.; Brodeau, L.; Graversen, R.G.; Karlsson, J.; Svensson, G.; Tjernström, M.; Wyser, K. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim. Dyn. 2013, 40, 2719–2743. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Nazrul Islam, M.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Long, S.M.; Hu, K.M.; Li, G. Surface Temperature Changes Projected by FGOALS Models under Low Warming Scenarios in CMIP5 and CMIP6. Adv. Atmos. Sci. 2021, 38, 203–220. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Costoya, X.; DeCastro, M.; Gómez-Gesteira, M. Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6. Renew. Sustain. Energy Rev. 2021, 151, 111594. [Google Scholar] [CrossRef]
- Bengtsson, L.; Andrae, U.; Aspelien, T.; Batrak, Y.; Calvo, J.; de Rooy, W.; Køltzow, M.Ø. The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Weather. Rev. 2017, 145, 1919–1935. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Díaz-Fernández, J.; Quitián-Hernández, L.; Bolgiani, P.; Santos-Muñoz, D.; García Gago, Á.; Fernández-González, S.; Martín, M.L. Mountain waves analysis in the vicinity of the Madrid-Barajas airport using the WRF model. Adv. Meteorol. 2020, 2020, 8871546. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arsouze, T.; Bergman, T.; Zhang, Q. The EC-Earth3 earth system model for the coupled model intercomparison project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Roeckner, E. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Ishii, M. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Von Storch, J.S. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 2013, 5, 422–446. [Google Scholar] [CrossRef]
- Notz, D.; Haumann, F.A.; Haak, H.; Jungclaus, J.H.; Marotzke, J. Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology’s Earth system model. J. Adv. Model. Earth Syst. 2013, 5, 173–194. [Google Scholar] [CrossRef]
- Stevens, B.; Giorgetta, M.; Esch, M.; Mauritsen, T.; Crueger, T.; Rast, S.; Roeckner, E. Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst. 2013, 5, 146–172. [Google Scholar] [CrossRef]
- Yoshimura, H.; Yukimoto, S. Development of a simple coupler (Scup) for earth system modeling. Pap. Meteorol. Geophys. 2008, 59, 19–29. [Google Scholar] [CrossRef]
- Fernández-González, S.; Sánchez, J.L.; Gascón, E.; López, L.; García-Ortega, E.; Merino, A. Weather features associated with aircraft icing conditions: A case study. Sci. World J. 2014, 2014, 279063. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Cresswell-Clay, N.; Ummenhofer, C.C.; Thatcher, D.L.; Wanamaker, A.D.; Denniston, R.F.; Asmerom, Y.; Polyak, V.J. Twentieth-century Azores High expansion unprecedented in the past 1,200 years. Nat. Geosci. 2022, 15, 548–553. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Martín, M.; Azorín-Molina, C.; Fernández-Álvarez, J.C.; Sheng, C.; Gimeno, L.; Vicente-Serrano, S.; Bedoya-Valestt, S.; Utrabo-Carazo, E. Projected near-surface wind speed changes over the Iberian Peninsula: Comparison of CMIP6 GCMS and a downscaled RCM using WRF. In Proceedings of the CLIVAR 2023: Towards and Integrated View of Climate, Madrid, Spain, 24–26 January 2023. [Google Scholar]
- Bolton, D. The computation of equivalent potential temperature. Mon. Weather. Rev. 1980, 108, 1046–1053. [Google Scholar] [CrossRef]
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Koch, S.E.; O’Handley, C. Operational forecasting and detection of mesoscale gravity waves. Weather. Forecast. 1997, 12, 253–281. [Google Scholar] [CrossRef]
HIST | S5-8.5 | |
---|---|---|
ERA5 | 116 (8/year) | - |
EC-EARTH3 | 169 (12/year) | 942 (11/year) |
MPI-ESM1.2-HR | 157 (11/year) | 927 (11/year) |
MRI-ESM2.0 | 112 (8/year) | 756 (9/year) |
ENS | 146 (10/year) | 942 (11/year) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Fernández, J.; Calvo-Sancho, C.; Bolgiani, P.; González-Alemán, J.J.; Farrán, J.I.; Sastre, M.; Martín, M.L. On the Precursor Environments to Mountain Lee Wave Clouds in Central Iberia under CMIP6 Projections. Atmosphere 2024, 15, 128. https://doi.org/10.3390/atmos15010128
Díaz-Fernández J, Calvo-Sancho C, Bolgiani P, González-Alemán JJ, Farrán JI, Sastre M, Martín ML. On the Precursor Environments to Mountain Lee Wave Clouds in Central Iberia under CMIP6 Projections. Atmosphere. 2024; 15(1):128. https://doi.org/10.3390/atmos15010128
Chicago/Turabian StyleDíaz-Fernández, Javier, Carlos Calvo-Sancho, Pedro Bolgiani, Juan Jesús González-Alemán, José Ignacio Farrán, Mariano Sastre, and María Luisa Martín. 2024. "On the Precursor Environments to Mountain Lee Wave Clouds in Central Iberia under CMIP6 Projections" Atmosphere 15, no. 1: 128. https://doi.org/10.3390/atmos15010128
APA StyleDíaz-Fernández, J., Calvo-Sancho, C., Bolgiani, P., González-Alemán, J. J., Farrán, J. I., Sastre, M., & Martín, M. L. (2024). On the Precursor Environments to Mountain Lee Wave Clouds in Central Iberia under CMIP6 Projections. Atmosphere, 15(1), 128. https://doi.org/10.3390/atmos15010128