Levels of Dry Deposition Submicron Black Carbon on Plant Leaves and the Associated Oxidative Potential
Abstract
:1. Introduction
2. Methods
2.1. Sample Collections
2.2. Water Extracts
2.3. Measurements of Submicron Soot and BC
2.4. OP Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Determination of BC onLeaves
3.2. Concentration of BC onLeaves across Species
3.3. Oxidative Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt-Traub, G.; Kroll, C.; Teksoz, K.; Durand-Delacre, D.; Sachs, J.D. National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nat. Geosci. 2017, 10, 547–555. [Google Scholar] [CrossRef]
- Bilgiç, E.; Tuna Tuygun, G.; Gündüz, O. Development of an emission estimation method with satellite observations for significant forest fires and comparison with global fire emission inventories: Application to catastrophic fires of summer 2021 over the Eastern Mediterranean. Atmos. Environ. 2023, 308, 119871. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, T.; Olson, M.R.; Liu, Y.; Zhang, T.; Wu, Y.; Schauer, J.J. Temporal variations of black carbon during haze and non-haze days in Beijing. Sci. Rep. 2016, 6, 33331. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Bisht, G.; Wang, H.; Xu, D.; Huang, H.; Qian, Y.; Leung, L.R. A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming. Nat. Commun. 2023, 14, 6074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Q.; Wu, N.; Ding, A. Weakened Haze Mitigation Induced by Enhanced Aging of Black Carbon in China. Environ. Sci. Technol. 2022, 56, 7629–7636. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Baumgartner, J.; Zhang, Y.; Liu, Y.; Sun, Y.; Zhang, M. Oxidative Potential and Inflammatory Impacts of Source Apportioned Ambient Air Pollution in Beijing. Environ. Sci. Technol. 2014, 48, 12920–12929. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Baumgartner, J.; Zhang, Y.; Schauer, J.J. Source apportionment of Beijing air pollution during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells. Atmos. Environ. 2016, 126, 28–35. [Google Scholar] [CrossRef]
- Kurihara, K.; Iwata, A.; Kiriya, M.; Yoshino, A.; Takami, A.; Matsuki, A.; Nishita-Hara, C.; Hara, K.; Hayashi, M.; Kaneyasu, N.; et al. Lung deposited surface area of atmospheric aerosol particles at three observatories in Japan. Atmos. Environ. 2021, 262, 118597. [Google Scholar] [CrossRef]
- Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.; Roden, C.; Streets, D.G.; Nina, M. Historicalemissionsofblackandorganiccarbonaerosolfromenergy-relatedcombustion, 1850–2000. Glob. Biogeochem. Cycles 2007, 21, GB2018. [Google Scholar]
- Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y.; et al. Black Carbon Emissions in China from 1949 to 2050. Environ. Sci. Technol. 2012, 46, 7595–7603. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. New urban models for more sustainable, liveable and healthier cities post covid19; reducing air pollution, noise and heat island effects and increasing green space and physical activity. Environ. Int. 2021, 157, 106850. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Zhou, Y.; Zhang, X. Evaluation of MERRA-2 Black Carbon Characteristics and Potential Sources over China. Atmosphere 2023, 14, 1378. [Google Scholar] [CrossRef]
- Han, X.; Sun, T.; Cao, T. Study on landscape quality assessment of urban forest parks: Take Nanjing Zijinshan National forest Park as an example. Ecol. Indic. 2021, 120, 106902. [Google Scholar] [CrossRef]
- Muresan, A.N.; Sebastiani, A.; Gaglio, M.; Fano, E.A.; Manes, F. Assessment of air pollutants removal by green infrastructure and urban and peri-urban forests management for a greening plan in the Municipality of Ferrara (Po river plain, Italy). Ecol. Indic. 2022, 135, 108554. [Google Scholar] [CrossRef]
- Mandal, M.; Das, S.; Roy, A.; Rakwal, R.; Jones, O.A.H.; Popek, R.; Agrawal, G.K.; Sarkar, A. Interactive relations between plants, the phyllosphere microbial community, and particulate matter pollution. Sci. Total Environ. 2023, 890, 164352. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Bing, H.; Luo, Z.; Wang, Y.; Jin, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019, 255, 113138. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Cai, M.; Xin, Z.; Yu, X. Spatio-temporal variations in PM leaf deposition: A meta-analysis. Environ. Pollut. 2017, 231, 207–218. [Google Scholar] [CrossRef]
- Tao, M.; Liu, Q.; Schauer, J.J. Direct measurement of the deposition of submicron soot particles on leaves of Platanus acerifolia tree. Environ. Sci. Process. Impacts 2022, 24, 2336–2344. [Google Scholar] [CrossRef]
- Rindy, J.E.; Ponette-González, A.G.; Barrett, T.E.; Sheesley, R.J.; Weathers, K.C. Urban Trees Are Sinks for Soot: Elemental Carbon Accumulation by Two Widespread Oak Species. Environ. Sci. Technol. 2019, 53, 10092–10101. [Google Scholar] [CrossRef]
- Klumpp, A.; Ansel, W.; Klumpp, G.; Belluzzo, N.; Calatayud, V.; Chaplin, N.; Garrec, J.P.; Gutsche, H.J.; Hayes, M.; Hentze, H.W.; et al. EuroBionet: A Pan-European Biomonitoring Network for Urban Air Quality Assessment. Environ. Sci. Pollut. Res. 2002, 9, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Nickel, S.; Schönrock, S.; Meyer, M.; Wosniok, W.; Harmens, H.; Frontasyeva, M.V.; Alber, R.; Aleksiayenak, J.; Barandovski, L.; et al. Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems. Environ. Sci. Pollut. Res. 2016, 23, 10457–10476. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Xu, Y.; Liu, Q.; Liu, Y.; Tian, S.; Schauer, J.J. Penetration of submicron amino-functionalized graphene quantum dots in plant stomata, implication for the depollution of atmospheric soot particles. Environ. Chem. Lett. 2023, 21, 1281–1286. [Google Scholar] [CrossRef]
- Kim, S.-W.; Cho, C.; Rupakheti, M. Estimating contributions of black and brown carbon to solar absorption from aethalometer and AERONET measurements in the highly polluted Kathmandu Valley, Nepal. Atmos. Res. 2021, 247, 105164. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Ge, X.; Shen, Y.; Ge, S.; Chen, M. Characteristics and sources of ambient refractory black carbon aerosols: Insights from soot particle aerosol mass spectrometer. Atmos. Environ. 2018, 185, 147–152. [Google Scholar] [CrossRef]
- Sipkens, T.A.; Boies, A.; Corbin, J.C.; Chakrabarty, R.K.; Olfert, J.; Rogak, S.N. Overview of methods to characterize the mass, size, and morphology of soot. J. Aerosol Sci. 2023, 173, 106211. [Google Scholar] [CrossRef]
- Pace, R.; Guidolotti, G.; Baldacchini, C.; Pallozzi, E.; Grote, R.; Nowak, D.J.; Calfapietra, C. Comparing i-Tree Eco Estimates of Particulate Matter Deposition with Leaf and Canopy Measurements in an Urban Mediterranean Holm Oak Forest. Environ. Sci. Technol. 2021, 55, 6613–6622. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; He, C.; Brown, Z.E.; Miljevic, B.; Zhang, C.; Wang, H.; Wang, B.; Morawska, L.; Ristovski, Z. Light absorption properties of black and brown carbon during the prescribed burning season at an urban background site in Brisbane, Australia. Atmos. Environ. 2023, 313, 120072. [Google Scholar] [CrossRef]
- Pintér, M.; Ajtai, T.; Kiss-Albert, G.; Kiss, D.; Utry, N.; Janovszky, P.; Palásti, D.; Smausz, T.; Kohut, A.; Hopp, B.; et al. Thermo-optical properties of residential coals and combustion aerosols. Atmos. Environ. 2018, 178, 118–128. [Google Scholar] [CrossRef]
- Kumar, P.; Patton, A.P.; Durant, J.L.; Frey, H.C. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmos. Environ. 2018, 187, 301–316. [Google Scholar] [CrossRef]
- Wu, G.; Fu, P.; Ram, K.; Song, J.; Chen, Q.; Kawamura, K.; Wan, X.; Kang, S.; Wang, X.; Laskin, A.; et al. Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosol. Environ. Pollut. 2021, 268, 115906. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, X.; Lian, F.; Wang, C.; White, J.C.; Wang, Z.; Xing, B. Nanoscale iron trioxide catalyzes the synthesis of auxins analogs in artificial humic acids to enhance rice growth. Sci. Total Environ. 2022, 848, 157536. [Google Scholar] [CrossRef] [PubMed]
- Khorasani, H.; Rajabzadeh, F.; Mozafari, H.; Pirbalouti, A.G. Water deficit stress impairment of morphophysiological and phytochemical traits of Stevia (Stevia rebaudiana Bertoni) buffered by humic acid application. S. Afr. J. Bot. 2023, 154, 365–371. [Google Scholar] [CrossRef]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Mutlu, A.; Tas, T. Foliar application of humic acid at heading improves physiological and agronomic characteristics of durum wheat (Triticum durum L.). J. King Saud Univ. Sci. 2022, 34, 102320. [Google Scholar] [CrossRef]
- Tian, S.; Liu, Q.; Qu, J.; Yang, M.; Ma, Q.; Liu, J.; Shao, P.; Liu, Y. Whole-Transcriptome Analysis on the Leaves of Rosa chinensis Jacq. under Exposure to Polycyclic Aromatic Hydrocarbons. Toxics 2023, 11, 610. [Google Scholar] [CrossRef] [PubMed]
- GB/T 34323-2017; Chinese National Standard Method, CarbonBlack—Determination of Light Transmittance of Water Dispersion-Specrophotometer Method. China National Standardization Administration Committee: Beijing, China, 2017.
- Nemecek-Marshall, M.; MacDonald, R.C.; Franzen, J.J.; Wojciechowski, C.L.; Fall, R. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development). Plant Physiol. 1995, 108, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, J.; Luo, X.; Qiu, J.; Qi, Y. Plants emit sulfate-, phosphate- and metal-containing nanoparticles. Environ. Chem. Lett. 2023, 21, 655–661. [Google Scholar] [CrossRef]
- Liu, Y.; Chan, C.K. The oxidative potential of fresh and aged elemental carbon-containing airborne particles: A review. Environ. Sci. Process. Impacts 2022, 24, 525–546. [Google Scholar] [CrossRef]
- Campbell, S.J.; Utinger, B.; Barth, A.; Paulson, S.E.; Kalberer, M. Iron and Copper Alter the Oxidative Potential of Secondary Organic Aerosol: Insights from Online Measurements and Model Development. Environ. Sci. Technol. 2023, 57, 13546–13558. [Google Scholar] [CrossRef]
- Zhu, J.; Shang, J.; Chen, Y.; Kuang, Y.; Zhu, T. Reactive Oxygen Species-Related Inside-to-Outside Oxidation of Soot Particles Triggered by Visible-Light Irradiation: Physicochemical Property Changes and Oxidative Potential Enhancement. Environ. Sci. Technol. 2020, 54, 8558–8567. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yu, J.; He, W.; Huang, J.; Xu, J.; Li, G. Replacing commercial carbon black by pyrolytic residue from waste tire for tire processing: Technically feasible and economically reasonable. Sci. Total Environ. 2021, 793, 148597. [Google Scholar] [CrossRef]
- Kim, J.; Park, E.; Moon, H.; Son, H.; Hong, J.; Wi, E.; Kwon, J.-T.; Seo, D.Y.; Lee, H.; Kim, Y. Estimation of the concentration of nano-carbon black in tire-wear particles using emission factors of PM10, PM2.5, and black carbon. Chemosphere 2022, 303, 134976. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gong, H.; Peng, N.; Zhang, J.Z. Molecular Adsorption Mechanism of Elemental Carbon Particles on Leaf Surface. Environ. Sci. Technol. 2018, 52, 5182–5190. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Adhikari, B.; Chen, X.D.; Che, L. Determination of ultra-low milk fat content using dual-wavelength ultraviolet spectroscopy. J. Dairy Sci. 2016, 99, 9652–9658. [Google Scholar] [CrossRef] [PubMed]
- Siegel, A.F.; Wagner, M.R. Chapter 15—ANOVA: Testing for Differences Among Many Samples and Much More. In Practical Business Statistics (Eighth Edition); Siegel, A.F., Wagner, M.R., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 485–510. [Google Scholar]
- Fung, P.L.; Zaidan, M.A.; Timonen, H.; Niemi, J.V.; Kousa, A.; Kuula, J.; Luoma, K.; Tarkoma, S.; Petäjä, T.; Kulmala, M.; et al. Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration. J. Aerosol. Sci. 2021, 152, 105694. [Google Scholar] [CrossRef]
- Przybysz, A.; Popek, R.; Stankiewicz-Kosyl, M.; Zhu, C.Y.; Małecka-Przybysz, M.; Maulidyawati, T.; Mikowska, K.; Deluga, D.; Griżuk, K.; Sokalski-Wieczorek, J.; et al. Where trees cannot grow – Particulate matter accumulation by urban meadows. Sci. Total Environ. 2021, 785, 147310. [Google Scholar] [CrossRef] [PubMed]
- Ponette-González, A.G.; Chen, D.; Elderbrock, E.; Rindy, J.E.; Barrett, T.E.; Luce, B.W.; Lee, J.-H.; Ko, Y.; Weathers, K.C. Urban edge trees: Urban form and meteorology drive elemental carbon deposition to canopies and soils. Environ. Pollut. 2022, 314, 120197. [Google Scholar] [CrossRef]
- Baldacchini, C.; Castanheiro, A.; Maghakyan, N.; Sgrigna, G.; Verhelst, J.; Alonso, R.; Amorim, J.H.; Bellan, P.; Bojović, D.Đ.; Breuste, J.; et al. How Does the Amount and Composition of PM Deposited on Platanus acerifolia Leaves Change Across Different Cities in Europe? Environ. Sci. Technol. 2017, 51, 1147–1156. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, Z.; Xiong, Y.; Huang, F.; Zhou, J. Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China. Sci. Total Environ. 2020, 701, 134844. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.; Liu, W.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Tao, S. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environ. Pollut. 2018, 236, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.T.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J.; Tolbert, P.E.; Abrams, J.Y.; Sarnat, S.E.; Klein, M.; Mulholland, J.A.; et al. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environ. Sci. Technol. 2019, 53, 4003–4019. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.-E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Xu, J.W.; Martin, R.V.; Evans, G.J.; Umbrio, D.; Traub, A.; Meng, J.; van Donkelaar, A.; You, H.; Kulka, R.; Burnett, R.T.; et al. Predicting Spatial Variations in Multiple Measures of Oxidative Burden for Outdoor Fine Particulate Air Pollution across Canada. Environ. Sci. Technol. 2021, 55, 9750–9760. [Google Scholar] [CrossRef]
- Dominutti, P.A.; Borlaza, L.J.S.; Sauvain, J.-J.; Ngoc Thuy, V.D.; Houdier, S.; Suarez, G.; Jaffrezo, J.-L.; Tobin, S.; Trébuchon, C.; Socquet, S.; et al. Source apportionment of oxidative potential depends on the choice of the assay: Insights into 5 protocols comparison and implications for mitigation measures. Environ. Sci. Atmos. 2023, 3, 1497–1512. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, Q. Levels of Dry Deposition Submicron Black Carbon on Plant Leaves and the Associated Oxidative Potential. Atmosphere 2024, 15, 127. https://doi.org/10.3390/atmos15010127
Xu Y, Liu Q. Levels of Dry Deposition Submicron Black Carbon on Plant Leaves and the Associated Oxidative Potential. Atmosphere. 2024; 15(1):127. https://doi.org/10.3390/atmos15010127
Chicago/Turabian StyleXu, Ying, and Qingyang Liu. 2024. "Levels of Dry Deposition Submicron Black Carbon on Plant Leaves and the Associated Oxidative Potential" Atmosphere 15, no. 1: 127. https://doi.org/10.3390/atmos15010127
APA StyleXu, Y., & Liu, Q. (2024). Levels of Dry Deposition Submicron Black Carbon on Plant Leaves and the Associated Oxidative Potential. Atmosphere, 15(1), 127. https://doi.org/10.3390/atmos15010127