Enhancing Solar Radiation Forecasting in Diverse Moroccan Climate Zones: A Comparative Study of Machine Learning Models with Sugeno Integral Aggregation
Abstract
:1. Introduction
- (1)
- Combining information from remote sensing parameters and hydro-meteorological data to improve hourly SR forecast accuracy using input data from hourly timesteps.
- (2)
- Capturing a wider variety of environmental variables and incorporating spatial components into the study by using the reflectance data from remote sensing.
- (3)
- Long short-term memory (LSTM), support vector machine (SVM) regression, and multilayer artificial neural networks (MLANN) are being investigated as ML approaches to perform a comprehensive comparison of SR prediction models and provide valuable insights into their relative strengths and weaknesses.
- (4)
- Using various weather dataset profiles, and comparing different ML techniques to assess the stability of the offered approaches.
- (5)
- Evaluating the efficacy of the proposed methodologies under various geographical and meteorological variables to validate the generalizability and reliability of SR prediction.
- (6)
- Conducting statistical analysis using the Kruskal–Wallis test to see whether the forecasts and observations data points have the same underlying distributions.
- (7)
- Improving the forecasting accuracy by applying fuzzy measure of that combines the accurate prediction information of the three models.
2. Materials and Methods
2.1. Data Profiles
2.2. Data Collection
2.3. Morocco’s Solar Energy Potential
2.4. ALLSKY_SFC_SW_DWN
3. Forecasting Models
3.1. Long Short-Term Memory (LSTM)
3.2. Support Vector Machine (SVM)
3.3. Multilayer Artificial Neural Networks (MLANN)
3.4. Aggregation Model Based on Sugeno λ-Measure and Sugeno Integral (SLSM)
Sugeno λ-Measure
4. Metrics for Performance Evaluation of Models
5. Modeling Development Procedure
5.1. Model Implementation
5.2. Model Architecture
6. Results and Discussion
7. Conclusions
- The results were evaluated using the Taylor diagrams, violin plots, and the error criteria of RMSE, MAE, and R2, and it was determined that the method that best predicted the observed values was LSTM (mean, RMSE: 41.05, MAE: 21.99, R2: 0.98). SVM and ANN come after LSTM. While the advantage of the LSTM model is that it makes predictions with less error due to its integration with the learn-and-forget structure and optimization techniques. It is also more complex than other methods due to its structure consisting of hyper parameters.
- The robustness of the model’s performance was also assessed using Kruskal–Wallis (KW) tests, which were used to confirm the stability of the suggested LSTM. The KW test confirmed at 95% confidence level that the distribution of the predicted and actual models were the same.
- The investigation discovered that predicting accuracy can be greatly increased by connecting the model outputs with aggregation techniques. The hybrid model was used by integrating the prediction outputs of LSTM, SVM, and MLANN with the Sugeno λ-measure and the Sugeno integral named (SLSM). SLSM improved prediction accuracy with an improvement of 11.7 w/m2 in reducing irregularities associated with SR data.
- Finally, these results proved that the LSTM model is applicable, valid, and an alternative for SR prediction in Morocco, which has tropical and subtropical desert climate zones.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, K.; Koike, T.; Ye, B. Improving Estimation of Hourly, Daily, and Monthly Solar Radiation by Importing Global Data Sets. Agric. For. Meteorol. 2006, 137, 43–55. [Google Scholar] [CrossRef]
- Jahani, B.; Dinpashoh, Y.; Raisi Nafchi, A. Evaluation and Development of Empirical Models for Estimating Daily Solar Radiation. Renew. Sustain. Energy Rev. 2017, 73, 878–891. [Google Scholar] [CrossRef]
- Asl, S.J.; Khorshiddoust, A.M.; Dinpashoh, Y.; Sarafrouzeh, F. Frequency Analysis of Climate Extreme Events in Zanjan, Iran. Stoch. Environ. Res. Risk Assess. 2013, 27, 1637–1650. [Google Scholar] [CrossRef]
- Jhajharia, D.; Kumar, R.; Dabral, P.P.; Singh, V.P.; Choudhary, R.R.; Dinpashoh, Y. Reference Evapotranspiration under Changing Climate over the Thar Desert in India. Meteorol. Appl. 2015, 22, 425–435. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jahanbakhsh-Asl, S.; Rasouli, A.A.; Foroughi, M.; Singh, V.P. Impact of Climate Change on Potential Evapotranspiration (Case Study: West and NW of Iran). Theor. Appl. Climatol. 2019, 136, 185–201. [Google Scholar] [CrossRef]
- Jahani, B.; Mohammadi, A.S.; Albaji, M. Impact of Climate Change on Crop Water and Irrigation Requirement (Case Study: Eastern Dez Plain, Iran). Pol. J. Nat. Sci. 2016, 31, 151–167. [Google Scholar]
- Mohammadi, K.; Mostafaeipour, A.; Dinpashoh, Y.; Pouya, N. Electricity Generation and Energy Cost Estimation of Large-Scale Wind Turbines in Jarandagh, Iran. J. Energy 2014, 2014, 613681. [Google Scholar] [CrossRef]
- Demirhan, H.; Atilgan, Y.K. New Horizontal Global Solar Radiation Estimation Models for Turkey Based on Robust Coplot Supported Genetic Programming Technique. Energy Convers. Manag. 2015, 106, 1013–1023. [Google Scholar] [CrossRef]
- Şen, Z. Solar Energy Fundamentals and Modeling Techniques: Atmosphere, Environment, Climate Change and Renewable Energy; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–276. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Solar–Wind Hybrid Renewable Energy System: A Review. Renew. Sustain. Energy Rev. 2016, 58, 23–33. [Google Scholar] [CrossRef]
- Liu, D.L.; Scott, B.J. Estimation of Solar Radiation in Australia from Rainfall and Temperature Observations. Agric. For. Meteorol. 2001, 106, 41–59. [Google Scholar] [CrossRef]
- Das, A.; Park, J.-K.; Park, J.-H. Estimation of Available Global Solar Radiation Using Sunshine Duration over South Korea. J. Atmos. Sol.-Terr. Phys. 2015, 134, 22–29. [Google Scholar] [CrossRef]
- Almorox, J. Estimating Global Solar Radiation from Common Meteorological Data in Aranjuez, Spain. Turk. J. Phys. 2011, 35, 53–64. [Google Scholar] [CrossRef]
- Angstrom, A. Solar and Terrestrial Radiation. Report to the International Commission for Solar Research on Actinometric Investigations of Solar and Atmospheric Radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–126. [Google Scholar] [CrossRef]
- Hossain, F.M.A.; Ali, M.K. Relation between Individual and Society. Open J. Soc. Sci. 2014, 02, 130–137. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Asce, F.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Mendyl, A.; Mabasa, B.; Bouzghiba, H.; Weidinger, T. Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco. Appl. Sci. 2023, 13, 320. [Google Scholar] [CrossRef]
- Mendyl, A.; Gandhi, A.; Musyimi, P.K.; Székely, B.; Weidinger, T. Comparative Analysis of Wind and Solar Energy Potential from Differnet Climate Regions, Case Studies of Morocco, India and Kenya. In Proceedings of the EGU22, the 24th EGU General Assembly, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Chen, R.; Ersi, K.; Yang, J.; Lu, S.; Zhao, W. Validation of Five Global Radiation Models with Measured Daily Data in China. Energy Convers. Manag. 2004, 45, 1759–1769. [Google Scholar] [CrossRef]
- Shamshirband, S.; Mohammadi, K.; Khorasanizadeh, H.; Yee, P.L.; Lee, M.; Petković, D.; Zalnezhad, E. Estimating the Diffuse Solar Radiation Using a Coupled Support Vector Machine–Wavelet Transform Model. Renew. Sustain. Energy Rev. 2016, 56, 428–435. [Google Scholar] [CrossRef]
- López, G.; Batlles, F.J.; Tovar-Pescador, J. Selection of Input Parameters to Model Direct Solar Irradiance by Using Artificial Neural Networks. Energy 2005, 30, 1675–1684. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Alamri, S.N. ANN-Based Modelling and Estimation of Daily Global Solar Radiation Data: A Case Study. Energy Convers. Manag. 2009, 50, 1644–1655. [Google Scholar] [CrossRef]
- Mohandes, M.A. Modeling Global Solar Radiation Using Particle Swarm Optimization (PSO). Sol. Energy 2012, 86, 3137–3145. [Google Scholar] [CrossRef]
- Vakili, M.; Sabbagh-Yazdi, S.R.; Khosrojerdi, S.; Kalhor, K. Evaluating the Effect of Particulate Matter Pollution on Estimation of Daily Global Solar Radiation Using Artificial Neural Network Modeling Based on Meteorological Data. J. Clean. Prod. 2017, 141, 1275–1285. [Google Scholar] [CrossRef]
- Pinker, R.T.; Kustas, W.P.; Laszlo, I.; Moran, M.S.; Huete, A.R. Basin-Scale Solar Irradiance Estimates in Semiarid Regions Using GOES 7. Water Resour. Res. 1994, 30, 1375–1386. [Google Scholar] [CrossRef]
- Pinker, R.T.; Frouin, R.; Li, Z. A Review of Satellite Methods to Derive Surface Shortwave Irradiance. Remote Sens. Environ. 1995, 51, 108–124. [Google Scholar] [CrossRef]
- Pinker, R.T.; Zhang, B.; Dutton, E.G. Do Satellites Detect Trends in Surface Solar Radiation? Science 2005, 308, 850–854. [Google Scholar] [CrossRef] [PubMed]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL); 1 Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Posselt, R.; Mueller, R.W.; Stöckli, R.; Trentmann, J. Remote Sensing of Solar Surface Radiation for Climate Monitoring—The CM-SAF Retrieval in International Comparison. Remote Sens. Environ. 2012, 118, 186–198. [Google Scholar] [CrossRef]
- Kumar, R.; Aggarwal, R.K.; Sharma, J.D. Comparison of Regression and Artificial Neural Network Models for Estimation of Global Solar Radiations. Renew. Sustain. Energy Rev. 2015, 52, 1294–1299. [Google Scholar] [CrossRef]
- Kisi, O.; Alizamir, M.; Trajkovic, S.; Shiri, J.; Kim, S. Solar Radiation Estimation in Mediterranean Climate by Weather Variables Using a Novel Bayesian Model Averaging and Machine Learning Methods. Neural Process. Lett. 2020, 52, 2297–2318. [Google Scholar] [CrossRef]
- Şahin, M. Comparison of Modelling ANN and ELM to Estimate Solar Radiation over Turkey Using NOAA Satellite Data. Int. J. Remote Sens. 2013, 34, 7508–7533. [Google Scholar] [CrossRef]
- Polo, J.; Antonanzas-Torres, F.; Vindel, J.M.; Ramirez, L. Sensitivity of Satellite-Based Methods for Deriving Solar Radiation to Different Choice of Aerosol Input and Models. Renew. Energy 2014, 68, 785–792. [Google Scholar] [CrossRef]
- Ahmad, M.J.; Tiwari, G.N. Solar Radiation Models—A Review. Int. J. Energy Res. 2011, 35, 271–290. [Google Scholar] [CrossRef]
- Belmahdi, B.; Louzazni, M.; Marzband, M.; Bouardi, A. El Global Solar Radiation Forecasting Based on Hybrid Model with Combinations of Meteorological Parameters: Morocco Case Study. Forecasting 2023, 5, 172–195. [Google Scholar] [CrossRef]
- Benmouiza, K.; Cheknane, A. Forecasting Hourly Global Solar Radiation Using Hybrid K-Means and Nonlinear Autoregressive Neural Network Models. Energy Convers. Manag. 2013, 75, 561–569. [Google Scholar] [CrossRef]
- Lauret, P.; Voyant, C.; Soubdhan, T.; David, M.; Poggi, P. A Benchmarking of Machine Learning Techniques for Solar Radiation Forecasting in an Insular Context. Sol. Energy 2015, 112, 446–457. [Google Scholar] [CrossRef]
- VOSviewer. Welcome to VOSviewer. Available online: https://www.vosviewer.com/ (accessed on 12 December 2023).
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Yacef, R.; Mellit, A.; Belaid, S.; Şen, Z. New Combined Models for Estimating Daily Global Solar Radiation from Measured Air Temperature in Semi-Arid Climates: Application in Ghardaïa, Algeria. Energy Convers. Manag. 2014, 79, 606–615. [Google Scholar] [CrossRef]
- Bayram, S.; Çıtakoğlu, H. Modeling Monthly Reference Evapotranspiration Process in Turkey: Application of Machine Learning Methods. Environ. Monit. Assess. 2023, 195, 67. [Google Scholar] [CrossRef]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.A.; Zhu, Z.; Gong, W. Solar Radiation Prediction Using Different Techniques: Model Evaluation and Comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [Google Scholar] [CrossRef]
- Ozoegwu, C.G. Artificial Neural Network Forecast of Monthly Mean Daily Global Solar Radiation of Selected Locations Based on Time Series and Month Number. J. Clean. Prod. 2019, 216, 1–13. [Google Scholar] [CrossRef]
- Guermoui, M.; Melgani, F.; Gairaa, K.; Mekhalfi, M.L. A Comprehensive Review of Hybrid Models for Solar Radiation Forecasting. J. Clean. Prod. 2020, 258, 120357. [Google Scholar] [CrossRef]
- Allouhi, A.; Kousksou, T.; Jamil, A.; El Rhafiki, T.; Mourad, Y.; Zeraouli, Y. Economic and Environmental Assessment of Solar Air-Conditioning Systems in Morocco. Renew. Sustain. Energy Rev. 2015, 50, 770–781. [Google Scholar] [CrossRef]
- Allouhi, A.; Jamil, A.; Kousksou, T.; El Rhafiki, T.; Mourad, Y.; Zeraouli, Y. Solar Domestic Heating Water Systems in Morocco: An Energy Analysis. Energy Convers. Manag. 2015, 92, 105–113. [Google Scholar] [CrossRef]
- Yang, D.; Bright, J.M. Worldwide Validation of 8 Satellite-Derived and Reanalysis Solar Radiation Products: A Preliminary Evaluation and Overall Metrics for Hourly Data over 27 Years. Sol. Energy 2020, 210, 3–19. [Google Scholar] [CrossRef]
- Bright, J.M. Solcast: Validation of a Satellite-Derived Solar Irradiance Dataset. Sol. Energy 2019, 189, 435–449. [Google Scholar] [CrossRef]
- SOLCAST|Solar Api and Solar Weather Forecasting Tool. Available online: https://solcast.com/ (accessed on 14 October 2023).
- Gueymard, C.A. REST2: High-Performance Solar Radiation Model for Cloudless-Sky Irradiance, Illuminance, and Photosynthetically Active Radiation—Validation with a Benchmark Dataset. Sol. Energy 2008, 82, 272–285. [Google Scholar] [CrossRef]
- Sparks, A. Nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R. J. Open Source Softw. 2018, 3, 1035. [Google Scholar] [CrossRef]
- NASA/POWER. The POWER Project. Available online: https://power.larc.nasa.gov/ (accessed on 12 November 2023).
- Al-Kilani, M.R.; Rahbeh, M.; Al-Bakri, J.; Tadesse, T.; Knutson, C. Evaluation of Remotely Sensed Precipitation Estimates from the NASA POWER Project for Drought Detection Over Jordan. Earth Syst. Environ. 2021, 5, 561–573. [Google Scholar] [CrossRef]
- Kheyruri, Y.; Sharafati, A. Spatiotemporal Assessment of the NASA POWER Satellite Precipitation Product over Different Regions of Iran. Pure Appl. Geophys. 2022, 179, 3427–3439. [Google Scholar] [CrossRef]
- Jed, M.; Ihaddadene, N.; El Hacen Jed, M.; Ihaddadene, R.; El Bah, M. Validation of the Accuracy of NASA Solar Irradiation Data for Four African Regions. Int. J. Sustain. Dev. Plan. 2022, 17, 29–39. [Google Scholar] [CrossRef]
- Duarte, Y.C.N.; Sentelhas, P.C. NASA/POWER and Daily Gridded Weather Datasets—How Good They Are for Estimating Maize Yields in Brazil? Int. J. Biometeorol. 2020, 64, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Kadhim Tayyeh, H.; Mohammed, R. Analysis of NASA POWER Reanalysis Products to Predict Temperature and Precipitation in Euphrates River Basin. J. Hydrol. 2023, 619, 129327. [Google Scholar] [CrossRef]
- Tan, M.L.; Armanuos, A.M.; Ahmadianfar, I.; Demir, V.; Heddam, S.; Al-Areeq, A.M.; Abba, S.I.; Halder, B.; Cagan Kilinc, H.; Yaseen, Z.M. Evaluation of NASA POWER and ERA5-Land for Estimating Tropical Precipitation and Temperature Extremes. J. Hydrol. 2023, 624, 129940. [Google Scholar] [CrossRef]
- Bandira, P.N.A.; Tan, M.L.; Teh, S.Y.; Samat, N.; Shaharudin, S.M.; Mahamud, M.A.; Tangang, F.; Juneng, L.; Chung, J.X.; Samsudin, M.S. Optimal Solar Farm Site Selection in the George Town Conurbation Using GIS-Based Multi-Criteria Decision Making (MCDM) and NASA POWER Data. Atmosphere 2022, 13, 2105. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Braga, R.P. Estimation of Daily Reference Evapotranspiration from NASA POWER Reanalysis Products in a Hot Summer Mediterranean Climate. Agronomy 2021, 11, 2077. [Google Scholar] [CrossRef]
- Azeroual, M.; Makrini, E.L.; El Moussaoui, H.; El Markhi, H. Renewable Energy Potential and Available Capacity for Wind and Solar Power in Morocco Towards 2030. J. Eng. Sci. Technol. Rev. 2018, 11, 189–198. [Google Scholar] [CrossRef]
- ONEE—Branche Eau. Available online: http://www.onep.ma/ (accessed on 14 October 2023).
- Richts, C. The Moroccan Solar Plan—A Comparative Analysis of CSP and PV Utilization until 2020; University of Kassel: Kassel, Germany, 2012; 113p, Available online: http://www.uni-kassel.de/eecs/fileadmin/datas/fb16/remena/theses/batch2 (accessed on 14 October 2023).
- Yu, Y.C.; Shi, J.; Wang, T.; Letu, H.; Zhao, C. All-Sky Total and Direct Surface Shortwave Downward Radiation (SWDR) Estimation from Satellite: Applications to MODIS and Himawari-8. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102380. [Google Scholar] [CrossRef]
- Kolsi, L.; Al-Dahidi, S.; Kamel, S.; Aich, W.; Boubaker, S.; Khedher, N.B. Prediction of Solar Energy Yield Based on Artificial Intelligence Techniques for the Ha’il Region, Saudi Arabia. Sustainability 2023, 15, 774. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of Land Surface Model and Land Use Data on WRF Model Simulations of Rainfall and Temperature over Lake Tana Basin, Ethiopia. Heliyon 2019, 5, E02469. [Google Scholar] [CrossRef]
- El Khalki, E.M.; Tramblay, Y.; Amengual, A.; Homar, V.; Romero, R.; Saidi, M.E.M.; Alaou, M. Validation of the AROME, ALADIN and WRF Meteorological Models for Flood Forecasting in Morocco. Water 2020, 12, 437. [Google Scholar] [CrossRef]
- ArunKumar, K.E.; Kalaga, D.V.; Kumar, C.M.S.; Kawaji, M.; Brenza, T.M. Forecasting of COVID-19 Using Deep Layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) Cells. Chaos Solitons Fractals 2021, 146, 110861. [Google Scholar] [CrossRef] [PubMed]
- Canizo, M.; Triguero, I.; Conde, A.; Onieva, E. Multi-Head CNN–RNN for Multi-Time Series Anomaly Detection: An Industrial Case Study. Neurocomputing 2019, 363, 246–260. [Google Scholar] [CrossRef]
- Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015; pp. 4580–4584. [Google Scholar]
- Ghimire, S.; Yaseen, Z.M.; Farooque, A.A.; Deo, R.C.; Zhang, J.; Tao, X. Streamflow Prediction Using an Integrated Methodology Based on Convolutional Neural Network and Long Short-Term Memory Networks. Sci. Rep. 2021, 11, 17497. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.E.; Çıtakoğlu, F. Design and Modeling of a Multigeneration System Driven by Waste Heat of a Marine Diesel Engine. Int. J. Hydrogen Energy 2022, 47, 40513–40530. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Smola, A.; Burges, C.; Drucker, H.; Golowich, S.; van Hemmen, L.; Muller, K.-R.M.M.; Schölkopf, B.S.; Vapnik, V. Regression Estimation with Support Vector Learning Machines; Physic Department, Technische Universität München: Munich, Germany, 1996; 78p. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial Neural Networks in Hydrology. II: Hydrologic Applications. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. IEEE Trans. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Melin, P.; Mendoza, O.; Castillo, O. Face Recognition with an Improved Interval Type-2 Fuzzy Logic Sugeno Integral and Modular Neural Networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2011, 41, 1001–1012. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the Use of “goodness-of-Fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Citakoglu, H.; Demir, V. Developing Numerical Equality to Regional Intensity–Duration–Frequency Curves Using Evolutionary Algorithms and Multi-Gene Genetic Programming. Acta Geophys. 2023, 71, 469–488. [Google Scholar] [CrossRef]
- Doğan, E.; Yüksel, İ.; Kişi, Ö. Estimation of Total Sediment Load Concentration Obtained by Experimental Study Using Artificial Neural Networks. Environ. Fluid Mech. 2007, 7, 271–288. [Google Scholar] [CrossRef]
- Kisi, O. Discussion of “Application of Neural Network and Adaptive Neuro-Fuzzy Inference Systems for River Flow Prediction”. Hydrol. Sci. J. 2010, 55, 1453–1454. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
Station | WMO Code | Latitude (°N) | Longitude (°W) | Altitude (m) | Köppen Climate Type |
---|---|---|---|---|---|
Marrakech | 60230 | 31.617 | −8.033 | 466 | Mid-latitude steppe and desert climate (Bsh) |
Fes | 60141 | 33.933 | −4.983 | 579 | Mediterranean climate (Csa) |
Agadir | 60252 | 30.383 | −9.567 | 23 | Mid-latitude steppe and desert climate (Bsh) |
Tangier | 60100 | 35.733 | −5.803 | 21 | Mediterranean climate (Csa) |
Ouarzazate | 60262 | 30.933 | −6.910 | 1140 | Tropical and subtropical desert climate (Bwh) |
Tantan | 60285 | 28.437 | −11.103 | 45 | Tropical and subtropical desert climate (Bwh) |
Stations | Data | Min | Mean | Max | Std | CS | Ck |
---|---|---|---|---|---|---|---|
Agadir | Training | 0.00 | 241.2 | 1038.1 | 314.7 | 0.95 | −0.57 |
Testing | 0.00 | 229.9 | 1040.9 | 305.7 | 0.99 | −0.49 | |
Fes | Training | 0.00 | 225.6 | 1044.4 | 302.9 | 1.07 | −0.25 |
Testing | 0.00 | 211.8 | 1046.4 | 290.2 | 1.12 | −0.11 | |
Marrakech | Training | 0.00 | 242.5 | 1053.2 | 318.8 | 0.98 | −0.48 |
Testing | 0.00 | 228.6 | 1042.6 | 306.9 | 1.04 | −0.35 | |
Ouarzazate | Training | 0.00 | 252.4 | 1065.2 | 328.9 | 0.94 | −0.62 |
Testing | 0.00 | 232.9 | 1059.0 | 311.4 | 1.01 | −0.44 | |
Tangier | Training | 0.00 | 210.5 | 1018.5 | 285.2 | 1.12 | −0.06 |
Testing | 0.00 | 199.29 | 1012.1 | 275.5 | 1.17 | 0.09 | |
Tantan | Training | 0.00 | 205.3 | 1025.1 | 276.8 | 1.07 | −0.25 |
Testing | 0.00 | 194.7 | 1003.7 | 267.0 | 1.11 | −0.12 |
Models | Stations | Training | Testing | ||||
---|---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | ||
LSTM | Agadir | 25.39 | 13.97 | 0.99 | 39.12 | 23.48 | 0.98 |
Fes | 36.47 | 19.87 | 0.98 | 41.32 | 21.19 | 0.98 | |
Marrakech | 29.19 | 17.33 | 0.99 | 30.45 | 16.30 | 0.99 | |
Ouarzazate | 28.95 | 15.59 | 0.99 | 37.75 | 20.15 | 0.98 | |
Tangier | 30.25 | 16.88 | 0.98 | 49.96 | 25.18 | 0.97 | |
Tantan | 41.09 | 22.00 | 0.97 | 47.72 | 25.63 | 0.96 | |
Mean | 31.89 | 17.61 | 0.98 | 41.05 | 21.99 | 0.98 | |
SVM | Agadir | 57.04 | 38.58 | 0.96 | 105.01 | 76.27 | 0.89 |
Fes | 41.92 | 24.06 | 0.98 | 49.38 | 27.12 | 0.97 | |
Marrakech | 56.23 | 38.16 | 0.96 | 81.82 | 55.87 | 0.94 | |
Ouarzazate | 33.20 | 20.04 | 0.98 | 48.77 | 29.36 | 0.97 | |
Tangier | 32.36 | 19.24 | 0.98 | 53.53 | 31.45 | 0.96 | |
Tantan | 70.10 | 44.35 | 0.93 | 94.20 | 70.93 | 0.88 | |
Mean | 48.47 | 30.74 | 0.97 | 72.12 | 48.50 | 0.93 | |
MLANN | Agadir | 75.85 | 47.23 | 0.94 | 81.64 | 50.94 | 0.92 |
Fes | 49.56 | 27.20 | 0.97 | 62.99 | 36.86 | 0.95 | |
Marrakech | 81.12 | 55.33 | 0.93 | 89.92 | 61.25 | 0.92 | |
Ouarzazate | 35.85 | 16.42 | 0.98 | 40.25 | 19.93 | 0.98 | |
Tangier | 50.86 | 32.43 | 0.96 | 75.55 | 52.39 | 0.93 | |
Tantan | 80.64 | 49.09 | 0.91 | 101.21 | 62.26 | 0.85 | |
Mean | 62.31 | 37.95 | 0.95 | 75.26 | 47.27 | 0.93 |
Site | Sample Sizes% | H-Statistic | p-Value |
---|---|---|---|
Agadir | 20 | 2.86 | 0.03 |
50 | 4.01 | 0.02 | |
70 | 7.29 | 0.01 | |
Fes | 20 | 3.94 | 0.04 |
50 | 5.20 | 0.01 | |
70 | 8.63 | 0.01 | |
Marrakech | 20 | 3.42 | 0.04 |
50 | 4.79 | 0.02 | |
70 | 8.03 | 0.01 | |
Ouarzazate | 20 | 3.02 | 0.03 |
50 | 4.63 | 0.02 | |
70 | 7.80 | 0.01 | |
Tangier | 20 | 3.70 | 0.04 |
50 | 4.97 | 0.02 | |
70 | 8.20 | 0.01 | |
Tantan | 20 | 4.29 | 0.04 |
50 | 5.69 | 0.03 | |
70 | 9.05 | 0.02 |
Site | SLSM |
---|---|
Agadir | 16.09 |
Fes | 22.01 |
Marrakech | 19.82 |
Ouarzazate | 19.11 |
Tangier | 21.29 |
Tantan | 22.67 |
Mean | 20.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendyl, A.; Demir, V.; Omar, N.; Orhan, O.; Weidinger, T. Enhancing Solar Radiation Forecasting in Diverse Moroccan Climate Zones: A Comparative Study of Machine Learning Models with Sugeno Integral Aggregation. Atmosphere 2024, 15, 103. https://doi.org/10.3390/atmos15010103
Mendyl A, Demir V, Omar N, Orhan O, Weidinger T. Enhancing Solar Radiation Forecasting in Diverse Moroccan Climate Zones: A Comparative Study of Machine Learning Models with Sugeno Integral Aggregation. Atmosphere. 2024; 15(1):103. https://doi.org/10.3390/atmos15010103
Chicago/Turabian StyleMendyl, Abderrahmane, Vahdettin Demir, Najiya Omar, Osman Orhan, and Tamás Weidinger. 2024. "Enhancing Solar Radiation Forecasting in Diverse Moroccan Climate Zones: A Comparative Study of Machine Learning Models with Sugeno Integral Aggregation" Atmosphere 15, no. 1: 103. https://doi.org/10.3390/atmos15010103
APA StyleMendyl, A., Demir, V., Omar, N., Orhan, O., & Weidinger, T. (2024). Enhancing Solar Radiation Forecasting in Diverse Moroccan Climate Zones: A Comparative Study of Machine Learning Models with Sugeno Integral Aggregation. Atmosphere, 15(1), 103. https://doi.org/10.3390/atmos15010103