Diagnosing Hurricane Barry Track Errors and Evaluating Physics Scalability in the UFS Short-Range Weather Application
Abstract
:1. Introduction
2. Data and Methods
2.1. Model Description, Physics Suites, and Verification Datasets
2.2. Methods
3. Results
3.1. GFS Physics Suites
3.2. GSD Physics Suites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Rao, Y.; Tan, Z.-M.; Schönemann, D. A Statistical Analysis of the Effects of Vertical Wind Shear on Tropical Cyclone Intensity Change over the Western North Pacific. Mon. Weather Rev. 2015, 143, 3434–3453. [Google Scholar] [CrossRef]
- UFS Development Team. Unified Forecast System (UFS) Short-Range Weather (SRW) Application (v1.0.0); Zenodo: Geneva, Switzerland, 2021. [CrossRef]
- Cangialosi, J.P.; Hagen, A.B.; Berg, R. Tropical Cyclone Report: Hurricane Barry. National Hurricane Center. 2019. Available online: https://www.nhc.noaa.gov/data/tcr/AL022019_Barry.pdf (accessed on 5 July 2023).
- Wang, Y.; Holland, G.J. Tropical Cyclone Motion and Evolution in Vertical Shear. J. Atmos. Sci. 1996, 53, 3313–3332. [Google Scholar] [CrossRef]
- Wu, L.; Wang, B. A Potential Vorticity Tendency Diagnostic Approach for Tropical Cyclone Motion. Mon. Weather Rev. 2000, 128, 1899–1911. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Ko, F.M.F.; Lei, Y.M. Relationship between Potential Vorticity Tendency and Tropical Cyclone Motion. J. Atmos. Sci. 2002, 59, 1317–1336. [Google Scholar] [CrossRef]
- Chan, J. The physics of tropical cyclone motion. Annu. Rev. Fluid Mech. 2005, 37, 99–128. [Google Scholar] [CrossRef]
- Jones, S.C. The evolution of vortices in vertical shear. I: Initially barotropic vortices. Q. J. R. Meteorol. Soc. 1995, 121, 821–851. [Google Scholar] [CrossRef]
- Chen, H.; Gopalakrishnan, S.G. A Study on the Asymmetric Rapid Intensification of Hurricane Earl (2010) Using the HWRF System. J. Atmos. Sci. 2014, 72, 531–550. [Google Scholar] [CrossRef]
- Reasor, P.D.; Eastin, M.D.; Gamache, J.F. Rapidly Intensifying Hurricane Guillermo (1997). Part I: Low-Wavenumber Structure and Evolution. Mon. Weather Rev. 2009, 137, 603–631. [Google Scholar] [CrossRef]
- Wang, Y.; Holland, G.J. The Beta Drift of Baroclinic Vortices. Part I: Adiabatic Vortices. J. Atmos. Sci. 1996, 53, 411–427. [Google Scholar] [CrossRef]
- Wang, Y.; Holland, G.J. The Beta Drift of Baroclinic Vortices. Part II: Diabatic Vortices. J. Atmos. Sci. 1996, 53, 3737–3756. [Google Scholar] [CrossRef]
- Willoughby, H.E. Linear Motion of a Shallow-Water, Barotropic Vortex. J. Atmos. Sci. 1988, 45, 1906–1928. [Google Scholar] [CrossRef]
- Willoughby, H.E. Linear Motion of a Shallow-Water Barotropic Vortex as an Initial-Value Problem. J. Atmos. Sci. 1992, 49, 2015–2031. [Google Scholar] [CrossRef]
- Wu, C.-C.; Emanuel, K.A. Interaction of a Baroclinic Vortex with Background Shear: Application to Hurricane Movement. J. Atmos. Sci. 1993, 50, 62–76. [Google Scholar] [CrossRef]
- Flatau, M.; Schubert, W.H.; Stevens, D.E. The Role of Baroclinic Processes in Tropical Cyclone Motion: The influence of Vertical Tilt. J. Atmos. Sci. 1994, 51, 2589–2601. [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M.; Knaff, J.A. A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- Gray, W.M. Global View of the Origin of Tropical Disturbances and Storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Merrill, R.T. Environmental Influences on Hurricane Intensification. J. Atmos. Sci. 1988, 45, 1678–1687. [Google Scholar] [CrossRef]
- Demaria, M.; Kaplan, J. Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical Cyclones. J. Clim. 1994, 7, 1324–1334. [Google Scholar] [CrossRef]
- Schubert, W.H.; Hack, J.J. Inertial Stability and Tropical Cyclone Development. J. Atmos. Sci. 1982, 39, 1687–1697. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Clos, J.A.; Shoreibah, M.G. Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex. J. Atmos. Sci. 1982, 39, 395–411. [Google Scholar] [CrossRef]
- Kossin, J.P.; Schubert, W.H. Mesovortices, Polygonal Flow Patterns, and Rapid Pressure Falls in Hurricane-Like Vortices. J. Atmos. Sci. 2001, 58, 2196–2209. [Google Scholar] [CrossRef]
- Eastin, M.D.; Gray, W.M.; Black, P.G. Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes. Part I: General Statistics. Mon. Weather Rev. 2005, 133, 188–208. [Google Scholar] [CrossRef]
- Eastin, M.D.; Gray, W.M.; Black, P.G. Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes. Part II: Case Studies. Mon. Weather Rev. 2005, 133, 209–227. [Google Scholar] [CrossRef]
- Zhang, M.; Bernardet, L.; Firl, G.; Heinzeller, D.; Carson, L. Scientific Documentation for the Common Community Physics Package Version 5. 2021. Available online: https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc (accessed on 5 July 2023).
- Heinzeller, D.; Bernardet, L.; Firl, G.; Zhang, M.; Sun, X.; Ek, M. The Common Community Physics Package (CCPP) Framework v6. Geosci. Model Dev. 2023, 16, 2235–2259. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Braithwaite, K.; Hsu, K.; Joyce, R.; Xie, P. Integrated Multi-satellitE Retrievals for GPM (IMERG), Version 4.4. NASA’s Precipitation Processing Center. 2014. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 1 August 2022).
- Du, J. NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data. Version 1.0 (Version 1.0) [GRIB-2: Gridded Binary Edition 2 (GRIB)]. UCAR/NCAR—Earth Observing Laboratory. 2011. Available online: https://data.eol.ucar.edu/dataset/21.093 (accessed on 28 June 2023). [CrossRef]
- Bourdin, S.; Fromang, S.; Dulac, W.; Cattiaux, J.; Chauvin, F. Intercomparison of Four Algorithms for Detecting Tropical Cyclones Using ERA5. Geosci. Model Dev. 2022, 15, 6759–6786. Available online: https://zenodo.org/record/6424432 (accessed on 22 June 2023). [CrossRef]
- Hodges, K.I. A General Method for Tracking Analysis and Its Application to Meteorological Data. Mon. Weather Rev. 1994, 122, 2573–2586. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, B.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. Available online: https://www.ncei.noaa.gov/erddap/griddap/ (accessed on 2 February 2023). [CrossRef]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A Multi-Scale High-Resolution Analysis of Global Sea Surface Temperature. Remote Sens. Environ. 2017, 200, 154–169. Available online: https://cmr.earthdata.nasa.gov/virtual-directory/collections/C1996881146-POCLOUD/ (accessed on 13 July 2023). [CrossRef]
- Biswas, M.; Stark, D.; Carson, L. GFDL Vortex Tracker Users Guide Version 3.9a. 2018. Available online: https://dtcenter.org/sites/default/files/community-code/gfdl/standalone_tracker_UG_v3.9a.pdf (accessed on 5 July 2023).
- Galarneau, T.J.; Davis, C.A. Diagnosing Forecast Errors in Tropical Cyclone Motion. Mon. Weather Rev. 2013, 141, 405–430. [Google Scholar] [CrossRef]
- Kitchen, M.; Jackson, P.M. Weather Radar Performance at Long Range—Simulated and Observed. J. Appl. Meteorol. Climatol. 1993, 32, 975–985. [Google Scholar] [CrossRef]
- Zhang, F.; Emanuel, K. On the Role of Surface Fluxes and WISHE in Tropical Cyclone Intensification. J. Atmos. Sci. 2016, 73, 2011–2019. [Google Scholar] [CrossRef]
- Emanuel, K.A. An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Chen, X.; Bryan, G.H.; Zhang, J.A.; Cione, J.J.; Marks, F.D. A Framework for Simulating the Tropical Cyclone Boundary Layer Using Large-Eddy Simulation and Its Use in Evaluating PBL Parameterizations. J. Atmos. Sci. 2021, 78, 3559–3574. [Google Scholar] [CrossRef]
- Hurricane Analysis and Forecast System. 2023. Available online: https://www.emc.ncep.noaa.gov/hurricane/HFSA/index.php (accessed on 24 July 2023).
- Li, W. Analysis of Hurricane Florence as a Case Study of UFS-SRW Performance; NCAR: Boulder, CO, USA, 2023. [Google Scholar]
GFDL-MP | GFSv15.2 | GFSv16beta | GSDv0 | GSD_Noah | GSD_noMY | |
---|---|---|---|---|---|---|
Cumulus | scale-aware SAS | scale-aware SAS | scale-aware SAS | Grell–Freitas | Grell–Freitas | Grell–Freitas |
Microphysics | GFDL | GFDL | GFDL | Thompson | Thompson | Thompson |
PBL | GFS-K-EDMF | GFS-K-EDMF | GFS-TKE-EDMF | MYNN-EDMF | MYNN-EDMF | MYNN-EDMF |
Surface Layer | GFS | GFS | GFS | GFS | GFS | MYNN |
Land Surface | NOAH | NOAH | NOAH | RUC | NOAH | NOAH |
Ozone | GFS (2006) | GFS (2015) | GFS (2015) | GFS (2015) | GFS (2015) | GFS (2015) |
Stratospheric Water Vapor | None | GFS | GFS | GFS | GFS | GFS |
GFDL-MP | v15.2 | v16beta | |||||||
---|---|---|---|---|---|---|---|---|---|
25 km | 13 km | 25 km | 13 km | 3 km | 25 km | 13 km | 3 km | 3 km-NoConv | |
Pre-recurve Removal Radius Mean Error (0–30 h) | −0.44° | 0.00° | −0.61° | −0.39° | −0.83° | −0.50° | −0.33° | −0.67° | −0.67° |
Post-recurve Removal Radius Mean Error (30 h+) | −0.33° | 0.13° | −1.10° | −1.60° | −0.93° | −1.17° | −1.27° | −0.63° | −0.20° |
Pre-recurve Depth Mean Error (0–30 h) | 16.67 mb | 77.78 mb | −44.44 mb | 0.00 mb | 108.33 mb | −16.67 mb | 41.67 mb | 147.22 mb | 141.67 mb |
Post-recurve Depth Mean Error (30 h+) | 58.33 mb | 35.0 mb | 91.67 mb | 220.00 mb | 56.67 mb | 13.33 mb | 46.67 mb | 125.00 mb | −25.00 mb |
v0 | noMY | Noah | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
25 km | 13 km | 3 km | 25 km | 13 km | 3 km | 25 km | 13 km | 3 km | 3 km NoConv | |
Pre-recurve Removal Radius Mean Error (0–15 h) | 3.67° | 0.67° | 2.00° | 4.00° | 0.00° | 1.00° | 4.00° | 2.33° | 0.00° | 1.00° |
Post-recurve Removal Radius Mean Error (15 h+) | −1.07° | −1.80° | −0.07° | −1.42° | −1.53° | −0.66° | −1.31° | −1.44° | −1.49° | −0.91° |
Pre-recurve Depth Mean Error (0–15 h) | 183.33 mb | 116.67 mb | 183.33 mb | 166.67 mb | −250.00 mb | 183.33 mb | 183.33 mb | 166.67 mb | 183.33 mb | 183.33 mb |
Post-recurve Depth Mean Error (15 h+) | 117.78 mb | 128.89 mb | 162.50 mb | 208.89 mb | 160.00 mb | 18.75 mb | 178.89 mb | 214.44 mb | 161.11 mb | 53.33 mb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lybarger, N.D.; Newman, K.M.; Kalina, E.A. Diagnosing Hurricane Barry Track Errors and Evaluating Physics Scalability in the UFS Short-Range Weather Application. Atmosphere 2023, 14, 1457. https://doi.org/10.3390/atmos14091457
Lybarger ND, Newman KM, Kalina EA. Diagnosing Hurricane Barry Track Errors and Evaluating Physics Scalability in the UFS Short-Range Weather Application. Atmosphere. 2023; 14(9):1457. https://doi.org/10.3390/atmos14091457
Chicago/Turabian StyleLybarger, Nicholas D., Kathryn M. Newman, and Evan A. Kalina. 2023. "Diagnosing Hurricane Barry Track Errors and Evaluating Physics Scalability in the UFS Short-Range Weather Application" Atmosphere 14, no. 9: 1457. https://doi.org/10.3390/atmos14091457
APA StyleLybarger, N. D., Newman, K. M., & Kalina, E. A. (2023). Diagnosing Hurricane Barry Track Errors and Evaluating Physics Scalability in the UFS Short-Range Weather Application. Atmosphere, 14(9), 1457. https://doi.org/10.3390/atmos14091457