Aerosol Optical Depth Retrieval for Sentinel-2 Based on Convolutional Neural Network Method
Abstract
:1. Introduction
2. Materials
2.1. Aerosol Robotic Network (AERONET) Data
2.2. Sentinel-2 Data
2.3. MODIS and Himawari-8 Data
3. Methods
3.1. Data Preprocessing
3.2. CNN Model
3.3. Evaluation Methods
4. Results and Discussion
4.1. Overall Validation of the CNN Model
4.2. Retrieval Performance of the CNN Model at Different Scales
4.3. Comparison with Other Models
4.4. Retrieval Performance as a Function of Satellite Image Size
5. Conclusions
- (1)
- The proposed model can accurately retrieve AOD, with an R2 of 0.95, RMSE of 0.049, and Within EE of 95% on the test dataset. The AOD-retrieval accuracy of CNN is higher compared with those of the DT, DB, DTB, MAIAC, YAER, RF, and VGG16 algorithms. In addition, CNN could provide continuous and detailed aerosol distribution to fill the observation gap in existing ground-based monitoring networks.
- (2)
- CNN efficiently performs AOD retrieval on different land cover types: vegetation surface, urban, and bare soil. When the surface reflectance is high, the satellite sensors can obtain less information about aerosols, making it difficult to retrieve aerosols on a high-reflectance surface. However, CNN still shows great AOD retrieval potential on surfaces with high surface reflectance, such as urban and bare soil, with an R2 of 0.96 and 0.90 and RMSE of 0.051 and 0.042, respectively.
- (3)
- CNN performs better in summer and winter than in spring and autumn. The performance of CNN in winter is the best, with an R2 of 0.97 and RMSE of 0.037. The performance of CNN in summer is the second best. The CNN performance in spring is poorer compared with those in the other three seasons, with an R2 of 0.93 and RMSE of 0.062.
- (4)
- To investigate the relationship between image size and model retrieval performance, datasets of 32, 64, and 128 sizes were created to train and test the CNN. The 128-size CNN performed better because of the rich AOD information in the 128-size image.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, Y.; He, X.W.; Xu, H.; Guang, J.P.; Guo, J.P.; Mei, L.L. China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmos. Environ. 2014, 95, 45–58. [Google Scholar] [CrossRef]
- Zhao, G.; Zhu, Y.; Wu, Z.; Zong, T.; Chen, J.; Tan, T.; Wang, H.; Fang, X.; Lu, K.; Zhao, C.; et al. Impact of aerosol–radiation interaction on new particle formation. Atmos. Chem. Phys. 2021, 21, 9995–10004. [Google Scholar] [CrossRef]
- Dong, B.; Wilcox, L.J.; Highwood, E.J.; Sutton, R.T. Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: Roles of aerosol–radiation and aerosol–cloud interactions. Clim. Dyn. 2019, 53, 3235–3256. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Broday, D.M.; Misra, A.; Tripathi, S.N. Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and mass loading. Remote Sens. Environ. 2017, 201, 297–313. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate Forcing by Anthropogenic Aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Toon, O.B. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 1996, 381, 681–683. [Google Scholar] [CrossRef]
- Wang, S.H.; Huang, H.Y.; Lin, C.H.; Pani, S.K.; Lin, N.H.; Lee, C.T.; Janjai, S.; Holben, B.N.; Chantara, S. Columnar aerosol types and compositions over peninsular Southeast Asia based on long-term AERONET data. Air Qual. Atmos. Health 2021, 1–12. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Andreae, M.O.; Asmi, A.; Chin, M.; Leeuw, G.; Donovan, D.P.; Kahn, R.; Kinne, S.; Kivekäs, N.; Kulmala, M.; et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 2014, 52, 750–808. [Google Scholar] [CrossRef]
- Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Y.F.; Wang, S.W.; Wei, C.; Pöhlker, M.L.; Pöhlker, C.; Artaxo, P.; Shrivastava, M.; Andreae, M.O.; Pöschl, U.; et al. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: Relative importance of aerosol-cloud and aerosol-radiation interactions. Atmos. Chem. Phys. 2020, 20, 13283–13301. [Google Scholar] [CrossRef]
- Koren, I.; Kaufman, Y.J.; Remer, L.A.; Martins, J.V. Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation. Science 2004, 303, 1342–1345. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Guo, J.G.; Ding, A.J.; Liao, H.; Liu, J.J.; Sun, Y.L.; Wang, T.J.; Xue, H.W.; Zhang, H.S.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar]
- Sun, Z.; Zhu, D. Exposure to outdoor air pollution and its human health outcomes: A scoping review. PLoS ONE 2019, 14, e0216550. [Google Scholar] [CrossRef] [PubMed]
- Matkovic, V.; Mulić, M.; Azabagić, S.; Jevtić, M. Premature Adult Mortality and Years of Life Lost Attributed to Long-Term Exposure to Ambient Particulate Matter Pollution and Potential for Mitigating Adverse Health Effects in Tuzla and Lukavac, Bosnia and Herzegovina. Atmosphere 2020, 11, 1107. [Google Scholar] [CrossRef]
- Keshavarz, F. Molecular level insights into the direct health impacts of some organic aerosol components. New J. Chem. 2021, 45, 6709–6723. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; Matteis, S.D.; Jung, S.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Xu, X.; Yan, Y.; Zhu, X.; Li, X. Air Pollution and Health Impacts of Atmospheric PM: Application of AirQ+ Model to Jiangsu Province in China. Int. J. Environ. Res. 2022, 16, 74. [Google Scholar] [CrossRef]
- Dhakal, S.; Gautam, Y.; Bhattarai, A. Exploring a deep LSTM neural network to forecast daily PM2.5 concentration using meteorological parameters in Kathmandu Valley, Nepal. Air Qual. Atmos. Health 2021, 14, 83–96. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Anenberg, S.C.; Schwartz, J.; Shindell, D.; Amann, M.; Faluvegi, G.; Klimont, Z.; Janssens-Maenhout, G.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; et al. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ. Health Perspect. 2012, 120, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Song, S.K.; Shon, Z.H.; Choi, Y.N.; Son, Y.B.; Kang, M.; Han, S.B.; Bae, M.S. Global trend analysis in primary and secondary production of marine aerosol and aerosol optical depth during 2000–2015. Chemosphere 2019, 224, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, C.; Li, W.; Anyah, R.O.; Tian, J. Exploring the trend, prediction and driving forces of aerosols using satellite and ground data, and implications for climate change mitigation. J. Clean. Prod. 2019, 223, 238–251. [Google Scholar]
- Falah, S.; Mhawish, A.; Omar, A.H.; Sorek-Hamer, M.; Lyapustin, A.I.; Banerjee, T.; Kizel, F.; Broday, D.M. Intercomparison of Aerosol Types Reported as Part of Aerosol Product Retrieval over Diverse Geographic Regions. Remote Sens. 2022, 14, 3667. [Google Scholar] [CrossRef]
- Ceamanos, X.; Six, B.; Moparthy, S.; Carrer, D.; Georgeot, A.; Gasteiger, J.; Riedi, J.; Attié, J.L.; Lyapustin, A.; Katsev, L. Instantaneous aerosol and surface retrieval using satellites in geostationary orbit (iAERUS-GEO)—Estimation of 15 min aerosol optical depth from MSG/SEVIRI and evaluation with reference data. Atmos. Meas. Tech. 2023, 16, 2575–2599. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.; Gao, B.; Li, R.; Flynn, L. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, J.; Jiao, D.; Zha, Y.; Cao, S. Evaluation of MODIS DT, DB, and MAIAC Aerosol Products over Different Land Cover Types in the Yangtze River Delta of China. Remote Sens. 2023, 15, 275. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O.; Yoshida, Y. Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America. Atmos. Meas. Tech. 2019, 12, 4291–4307. [Google Scholar] [CrossRef]
- Mayr, M.J.; Vanselow, K.A.; Samimi, C. Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecol. Indic. 2018, 91, 324–337. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar]
- Chen, Y.; Fan, M.; Li, M.; Li, Z.; Tao, J.; Wang, Z.; Chen, L. Himawari-8/AHI Aerosol Optical Depth Detection Based on Machine Learning Algorithm. Remote Sens. 2022, 14, 2967. [Google Scholar] [CrossRef]
- Chen, X.; Leeuw, G.D.; Arola, A.; Liu, S.; Liu, Y.; Li, Z.; Zhang, K. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method. Remote Sens. Environ. 2020, 249, 112006. [Google Scholar] [CrossRef]
- Wei, J.; Yang, F.; Ren, X.C.; Zou, S. A Short-Term Prediction Model of PM2.5 Concentration Based on Deep Learning and Mode Decomposition Methods. Appl. Sci. 2021, 11, 6915. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, G.; Lv, T.; Ao, A.; Zhang, Y. PM2.5 Forecast Based on a Multiple Attention Long Short-Term Memory (MAT-LSTM) Neural Networks. Anal. Lett. 2020, 54, 935–946. [Google Scholar] [CrossRef]
- Yan, X.; Zang, Z.; Luo, N.; Jiang, Y.; Li, Z. New interpretable deep learning model to monitor real-time PM2.5 concentrations from satellite data. Environ. Int. 2020, 144, 106060. [Google Scholar] [CrossRef] [PubMed]
- Choe, T.H.; Ho, C.S. An improvement of PM2.5 concentration prediction using optimised deep LSTM. Int. J. Environ. Pollut. 2022, 69, 3–4. [Google Scholar]
- Wei, X.; Chang, N.; Bai, K.; Gao, W. Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Crit. Rev. Environ. Sci. Technol. 2019, 50, 1640–1725. [Google Scholar] [CrossRef]
- Eom, S.; Kim, J.; Lee, S.; Holben, B.N.; Eck, T.F.; Park, S.; Park, S.S. Long-term variation of aerosol optical properties associated with aerosol types over East Asia using AERONET and satellite (VIIRS, OMI) data (2012–2019). Atmos. Res. 2022, 280, 106457. [Google Scholar] [CrossRef]
- Li, G.; Mao, Y.; Feng, X.; Chen, Z.; Yang, Z.; Cheng, X. Monitoring ice flow velocity of Petermann glacier combined with Sentinel-1 and −2 imagery. Int. J. Appl. Earth Obs. 2023, 121, 1569–8432. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Tao, M.; Wei, J.; Jin, J.; Tan, Y.; Wang, Q. Validation of Himawari-8 aerosol optical depth retrievals over China. Atmos. Environ. 2019, 199, 32–44. [Google Scholar] [CrossRef]
- Wang, W.; Mao, F.; Pan, Z.; Gong, W.; Yoshida, M.; Zou, B.; Ma, H. Evaluating Aerosol Optical Depth From Himawari-8 With Sun Photometer Network. J. Geophys. Res. Atmos. 2019, 124, 5516–5538. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Yang, K.; Cermak, J.; Chen, Y. High-resolution aerosol retrieval over urban areas using sentinel-2 data. Atmos. Res. 2021, 264, 105829. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E. Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling. Earth-Sci. Rev. 2020, 201, 103076. [Google Scholar] [CrossRef]
- Mantas, C.J.; Castellano, J.G.; Moral-García, S.; Abellán, J. A comparison of random forest based algorithms: Random credal random forest versus oblique random forest. Soft Comput. 2019, 23, 10739–10754. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Jia, C.; Sun, L.; Chen, Y.F.; Zhang, X.K.; Wang, W.Y.; Wang, Y.J. Inversion of aerosol optical depth for Landsat 8 OLI data using deep belief network. J. Remote Sens. 2020, 24, 1180–1192. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, M.; Kang, E.; Cho, D.; Im, J. Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia. ISPRS J. Photogramm. 2022, 183, 253–268. [Google Scholar] [CrossRef]
- Choi, M.; Lim, H.; Kim, J.; Lee, S.; Eck, T.F.; Holben, B.N.; Garay, M.J.; Hyer, E.J.; Saide, P.E.; Liu, H. Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign. Atmos. Meas. Tech. 2019, 12, 4619–4641. [Google Scholar] [CrossRef]
Site Name | Location | Abbreviation | Longitude (° E) | Latitude (° N) | Matched Number |
---|---|---|---|---|---|
Beijing | North China | NC01 | 116.381 | 39.977 | 289 |
Beijing-CAMS | North China | NC02 | 116.317 | 39.933 | 311 |
Beijing_PKU | North China | NC03 | 116.310 | 39.992 | 170 |
Beijing_RADI | North China | NC04 | 116.379 | 40.005 | 181 |
AOE_Baotou | North China | NC05 | 109.629 | 40.852 | 202 |
Hong_Kong_PolyU | Hong Kong | HK01 | 114.180 | 22.303 | 63 |
Hong_Kong_Sheung | Hong Kong | HK02 | 114.117 | 22.483 | 25 |
NAM_CO | Tibet | TB01 | 90.962 | 30.773 | 18 |
QOMS_CAS | Tibet | TB02 | 86.948 | 28.365 | 90 |
Lulin | Taiwan | TW01 | 120.874 | 23.469 | 90 |
Chen-Kung_Univ | Taiwan | TW02 | 120.205 | 22.993 | 75 |
Douliu | Taiwan | TW03 | 120.545 | 23.712 | 55 |
EPA-NCU | Taiwan | TW04 | 121.185 | 24.968 | 84 |
Taipei_CWB | Taiwan | TW05 | 121.538 | 25.015 | 52 |
Chiba_University | Japan | JP1 | 140.104 | 35.625 | 132 |
Fukuoka | Japan | JP2 | 130.475 | 33.524 | 90 |
Hokkaido_University | Japan | JP3 | 141.341 | 43.076 | 63 |
Noto | Japan | JP4 | 137.137 | 37.334 | 52 |
Baengnyeong | South Korea | KR1 | 124.630 | 37.966 | 15 |
Gangneung_WNU | South Korea | KR2 | 128.867 | 37.771 | 309 |
Gwangju_GIST | South Korea | KR3 | 126.843 | 35.228 | 70 |
Hankuk_UFS | South Korea | KR4 | 127.266 | 37.339 | 141 |
Bands | Spatial Resolution (m/pixel) | Sentinel-2A | Sentinel-2B | ||
---|---|---|---|---|---|
Central Wavelength (nm) | Bandwidth (nm) | Central Wavelength (nm) | Bandwidth (nm) | ||
Band 2 | 10 | 492.4 | 66 | 492.1 | 66 |
Band 4 | 10 | 664.6 | 31 | 664.9 | 31 |
Band 8 | 10 | 832.8 | 106 | 832.9 | 106 |
Band 12 | 20 | 2202.4 | 175 | 2185.7 | 185 |
Dataset | Satellite/Sensor | Contents | Spatial Resolution |
---|---|---|---|
MCD19A2 | Terra/MODIS | MAIAC AODs | 1 km/pixel |
MOD04_L2 | Terra/MODIS | DT AODs | 10 km/pixel |
Terra/MODIS | DB AODs | 10 km/pixel | |
Terra/MODIS | DTB AODs | 10 km/pixel | |
H08 | Himawari-8/AHI | YAER AODs | 0.05°/pixel |
Matched Number | MAE | RMSE | within EE | above EE | below EE | |
---|---|---|---|---|---|---|
Low AOD | 269 | 0.021 | 0.034 | 94% | 6% | 0% |
High AOD | 246 | 0.042 | 0.060 | 95% | 1% | 4% |
Seasons | Matched Number | Spearman R | Pearson R | R2 | MAE | RMSE | within EE |
---|---|---|---|---|---|---|---|
Spring | 144 | 0.95 | 0.97 | 0.93 | 0.039 | 0.062 | 94% |
Summer | 88 | 0.92 | 0.98 | 0.96 | 0.034 | 0.045 | 93% |
Autumn | 112 | 0.9 | 0.97 | 0.94 | 0.030 | 0.046 | 93% |
Winter | 171 | 0.95 | 0.99 | 0.97 | 0.024 | 0.037 | 97% |
Land Cover Types | Matched Number | Spearman R | Pearson R | R2 | MAE | RMSE | within EE |
---|---|---|---|---|---|---|---|
Vegetation surface | 128 | 0.94 | 0.96 | 0.92 | 0.029 | 0.044 | 95% |
Urban | 331 | 0.94 | 0.98 | 0.96 | 0.032 | 0.051 | 95% |
Bare soil | 56 | 0.9 | 0.95 | 0.90 | 0.030 | 0.042 | 95% |
Method | Satellite | Spearman R | Pearson R | R2 | MAE | RMSE |
---|---|---|---|---|---|---|
CNN | Sentinel-2 | 0.94 | 0.98 | 0.95 | 0.031 | 0.049 |
MAIAC | Terra | / | 0.93 | / | / | 0.150 |
DT | Terra | / | 0.87 | / | / | 0.220 |
DB | Terra | / | 0.88 | / | / | 0.170 |
YAER | Himawari-8 | / | 0.91 | / | / | 0.140 |
VGG16 | Sentinel-2 | 0.79 | 0.86 | 0.70 | 0.079 | 0.123 |
RF | Sentinel-2 | 0.88 | 0.93 | 0.86 | 0.054 | 0.085 |
Image Size | Spearman R | Pearson R | R2 | MAE | RMSE | within EE | above EE | below EE |
---|---|---|---|---|---|---|---|---|
32 × 32 | 0.94 | 0.96 | 0.92 | 0.039 | 0.065 | 91% | 5% | 4% |
64 × 64 | 0.95 | 0.97 | 0.93 | 0.032 | 0.060 | 94% | 4% | 2% |
128 × 128 | 0.94 | 0.98 | 0.95 | 0.031 | 0.049 | 95% | 3% | 2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Liu, J.; Jiao, D. Aerosol Optical Depth Retrieval for Sentinel-2 Based on Convolutional Neural Network Method. Atmosphere 2023, 14, 1400. https://doi.org/10.3390/atmos14091400
Jiang J, Liu J, Jiao D. Aerosol Optical Depth Retrieval for Sentinel-2 Based on Convolutional Neural Network Method. Atmosphere. 2023; 14(9):1400. https://doi.org/10.3390/atmos14091400
Chicago/Turabian StyleJiang, Jie, Jiaxin Liu, and Donglai Jiao. 2023. "Aerosol Optical Depth Retrieval for Sentinel-2 Based on Convolutional Neural Network Method" Atmosphere 14, no. 9: 1400. https://doi.org/10.3390/atmos14091400
APA StyleJiang, J., Liu, J., & Jiao, D. (2023). Aerosol Optical Depth Retrieval for Sentinel-2 Based on Convolutional Neural Network Method. Atmosphere, 14(9), 1400. https://doi.org/10.3390/atmos14091400