South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Reference Dataset
2.2. CMIP6-GCMs
Model | Resolution (°Lat × °Lon) | Institute | Reference |
---|---|---|---|
CMCC-CM2-SR5 | 1.25 × 0.94 | Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici | Lovato and Peano [55] |
CMCC-ESM2 | 1.25 × 0.94 | Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici | Lovato et al. [56] |
EC-Earth3 | 0.70 × 0.70 | EC-Earth Consortium | Döscher et al. [57] |
GFDL-ESM4 | 1.25 × 1.00 | Geophysical Fluid Dynamics Laboratory | Krasting et al. [58] |
IPSL-CM6A-LR | 2.50 × 1.26 | Institut Pierre Simon Laplace | Boucher et al. [59] |
MIROC-6 | 1.41 × 1.41 | Japan Agency for Marine-Earth Science and Technology | Tatebe and Watanabe [60] |
MPI-ESM1-2-LR | 0.94 × 0.94 | Max Planck Institute for Meteorology | Wieners et al. [61] |
MRI-ESM2-0 | 1.13 × 1.13 | Meteorological Research Institute | Yukimoto et al. [62] |
2.3. Statistical Downscaling
2.4. Determination of SAMS Lifecycle
2.5. Analysis
3. Results and Discussion
3.1. BCSD Performance
3.2. Climate Projections
Spatial Patterns
3.3. Time Series Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramage, C.S. Monsoon Meteorology, 1st ed.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Wang, B.; Liu, J.; Kim, H.-J.; Webster, P.J.; Yim, S.-Y. Recent change of the global monsoon precipitation (1979–2008). Clim. Dyn. 2012, 39, 1123–1135. [Google Scholar] [CrossRef]
- Grimm, A.M.; Dominguez, F.; Cavalcanti, I.F.; Cavazos, T.; Gan, M.A.; Silva Dias, P.L.; Fu, R.; Castro, C.; Hu, H.; Barreiro, M. South and North American Monsoons: Characteristics, life cycle, variability, modeling, and prediction. In The Multiscale Global Monsoon System, 4th ed.; Chang, C.-P., Ha, K.-J., Johnson, R.H., Kim, D., Lau, G.N.C., Wang, B., Eds.; World Scientific: Singapore, 2020; pp. 49–66. [Google Scholar] [CrossRef]
- Teodoro, T.A.; Reboita, M.S.; Llopart, M.; da Rocha, R.P.; Ashfaq, M. Climate change impacts on the South American Monsoon System and its surface-atmosphere processes through RegCM4 CORDEX-CORE projections. Earth Syst. Environ. 2021, 5, 825–847. [Google Scholar] [CrossRef]
- Silva, V.B.; Kousky, V.E. The South American monsoon system: Climatology and variability. Modern Climatol. 2012, 123, 152. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Cavalcanti, I.F.A. The South American Monsoon System (SAMS). In The Monsoons and Climate Change, 1st ed.; Carvalho, L.M.V., Jones, C., Eds.; Springer: Sydney, Australia, 2016; pp. 121–148. [Google Scholar]
- Liebmann, B.; Marengo, J.A. Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J. Clim. 2001, 14, 4308–4318. [Google Scholar] [CrossRef]
- Vera, C.; Higgins, W.; Amador, J.; Ambrizzi, T.; Garreaud, R.; Gochis, D.; Gutzler, D.; Lettenmaier, D.; Marengo, J.A.; Mechoso, C.R.; et al. Toward a unified view of the American Monsoon Systems. J. Clim. 2006, 19, 4977–5000. [Google Scholar] [CrossRef]
- Gan, M.A.; Kousky, V.; Ropelewski, C.F. The South America monsoon rainfall over West-Central Brazil. J. Clim. 2004, 17, 47–66. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Carvalho, L.M.V. IPCC global coupled model simulations of the South America monsoon system. Clim. Dyn. 2009, 33, 893–916. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Dias, C.G.; Ynoue, R.Y. Climate projections for South America: RegCM43 driven by HadCM3 and ECHAM5. Adv. Meteorol. 2014, 2014, 376738. [Google Scholar] [CrossRef]
- Ashfaq, M.; Cavazos, T.; Reboita, M.S.; Torres-Alavez, J.A.; Im, E.-S.; Olusegun, C.F.; Alves, L.; Key, K.; Adeniyi, M.O.; Tall, M.; et al. Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations. Clim. Dyn. 2021, 57, 1463–1488. [Google Scholar] [CrossRef]
- Kousky, V.E. Pentad outgoing longwave radiation climatology for the South American sector. Rev. Bras. Meteorol. 1988, 3, 217–231. [Google Scholar]
- Fu, R.; Li, W. The influence of the land surface on the transition from dry to wet season in Amazonia. Theor. Appl. Climatol. 2004, 78, 97–110. [Google Scholar] [CrossRef]
- Dias, C.G.; Reboita, M.S.; da Rocha, R.P.; Cuadra, S.V. Validação dos Fluxos Turbulentos de Calor sobre a América do Sul Simulados pelo RegCM3. In IV Simpósio Internacional de Climatologia; SIC: João Pessoa, Brazil, 2011. [Google Scholar]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic Convergence Zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef]
- Gonzalez, P.L.M.; Vera, C.S. Summer precipitation variability over South America on long and short intraseasonal timescales. Clim. Dyn. 2014, 43, 1993–2007. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Carvalho, L.M.V.; Jones, C.; Reboita, M.S. Precipitation over eastern South America and the South Atlantic sea surface temperature during neutral ENSO periods. Clim. Dyn. 2014, 42, 1553–1568. [Google Scholar] [CrossRef]
- Grimm, A.M. South American monsoon and its extremes. In Tropical Extremes-Natural Variability and Trends, 1st ed.; Venugopal, V., Sukhatme, J., Murtugudde, R., Roca, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 51–93. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Benezoli, V.; Justino, F.; Torres, R.R.; Wilson, A. Assessing current and future trends of climate extremes across Brazil based on reanalyses and earth system model projections. Clim. Dyn. 2020, 55, 1403–1426. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.G.; Santoso, A.; et al. Climate impacts of the El Niño-Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Crespo, N.M.; Dutra, L.M.M.; Ferreira, G.W.S.; Rehbein, A.; Drumond, A.; da Rocha, R.P.; Souza, C.A. Impacts of teleconnection patterns on South America climate. Ann. N. Y. Acad. Sci. 2021, 1504, 116–153. [Google Scholar] [CrossRef]
- Mechoso, C.R.; Robertson, A.W.; Ropelewski, C.F.; Grimm, A.M. The American monsoon systems: An introduction. In The Global Monsoon System: Research and Forecast; Chap. 13. WMO lTD No. 1266 (TMRP Report No. 70); Chang, C.-P., Kuo, H.-C., Lau, N.-C., Johnson, R.H., Wang, B., Wheeler, M.C., Eds.; World Scientific: Singapore, 2005; pp. 197–206. [Google Scholar]
- Fu, R.; Yin, L.; Li, W.; Arias, P.A.; Dickinson, R.E.; Huang, L.; Chakraborty, S.; Fernandes, K.; Liebmann, B.; Fisher, R.; et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl. Acad. Sci. USA 2013, 110, 18110–18115. [Google Scholar] [CrossRef]
- Arias, P.A.; Fu, R.; Vera, C.; Rojas, M. A correlated shortening of the North and South American monsoon seasons in the past few decades. Clim. Dyn. 2015, 45, 3183–3203. [Google Scholar] [CrossRef]
- Sena, A.C.T.; Magnusdottir, G. Projected end-of-century changes in the South American Monsoon in the CESM large ensemble. J. Clim. 2020, 33, 7859–7874. [Google Scholar] [CrossRef]
- Correa, I.; Arias, P.A.; Rojas, M. Evaluation of multiple indices of the South American monsoon. Int. J. Climatol. 2020, 41, 2801–2819. [Google Scholar] [CrossRef]
- Dhakal, S.; Minx, J.C.; Toth, F.L.; Abdel-Aziz, A.; Meza, M.J.F.; Hubacek, K.; Jonckheere, I.G.C.; Kim, Y.-G.; Nemet, G.F.; Pachauri, S.; et al. Emissions Trends and Drivers. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Llopart, M.; Reboita, M.S.; Coppola, E.; Giorgi, F.; da Rocha, R.P.; Souza, D.O. Land use change over the Amazon Forest and its impact on the local climate. Water 2018, 10, 149. [Google Scholar] [CrossRef]
- Rizzo, R.; Garcia, A.S.; Vilela, V.M.F.N.; Ballester, M.V.R.; Neill, C.; Victoria, D.C.; da Rocha, H.R.; Coe, M.T. Land use changes in Southeastern Amazon and trends in rainfall and water yield of the Xingu River during 1976-2015. Clim. Change 2020, 162, 1419–1436. [Google Scholar] [CrossRef]
- Marengo, J.A.; Jimenez, J.C.; Espinoza, J.C.; Cunha, A.P.; Aragão, L.E.O. Increased climate pressure on the agricultural frontier in the Eastern Amazonia-Cerrado transition zone. Sci. Rep. 2022, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; Carvalho, L.M. Climate change in the South American monsoon system: Present climate and CMIP5 projections. J. Clim. 2013, 26, 6600–6678. [Google Scholar] [CrossRef]
- Khalili, M.; Van Nguyen, V.T. A perfect prognosis approach for daily precipitation series in consideration of space–time correlation structure. Stoch. Environ. Res. Risk. Assess. 2018, 32, 3333–3364. [Google Scholar] [CrossRef]
- Di Virgillio, G.; Ji, F.; Tam, E.; Nishant, N.; Evans, J.P.; Thomas, C.; Riley, M.L.; Beyer, K.; Grose, M.R.; Narsey, S.; et al. Selecting CMIP6 GCMs for CORDEX dynamical downscaling: Model performance, independence, and climate change signals. Earth’s Future 2022, 10, e2021EF002625. [Google Scholar] [CrossRef]
- Rettie, F.M.; Gayler, S.; Weber, T.K.D.; Tesfaye, K.; Streck, T. High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. Sci. Data 2023, 10, 442. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Lee, T.; Singh, V.P. Statistical Downscaling for Hydrological and Environmental Applications, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bettolli, M.L.; Solman, S.A.; da Rocha, R.P.; Llopart, M.; Gutierrez, J.M.; Fernández, J.; Olmo, M.E.; Lavin-Gullon, A.; Chou, S.C.; Rodrigues, D.C.; et al. The CORDEX Flagship Pilot Study in southeastern South America: A comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Clim. Dyn. 2021, 56, 1589–1608. [Google Scholar] [CrossRef]
- Balmaceda-Huarte, R.; Bettolli, M.L. Assessing statistical downscaling in Argentina: Daily maximum and minimum temperatures. Int. J. Climatol. 2022, 42, 8423–8445. [Google Scholar] [CrossRef]
- Olmo, M.E.; Bettolli, M.L. Statistical downscaling of daily precipitation over southeastern South America: Assessing the performance in extreme events. Int. J. Climatol. 2022, 42, 1283–1302. [Google Scholar] [CrossRef]
- Olmo, M.E.; Balmaceda-Huarte, R.; Bettolli, M.L. Multi-model ensemble of statistically downscaled GCMs over southeastern South America: Historical evaluation and future projections of daily precipitation with focus on extremes. Clim. Dyn. 2022, 59, 3051–3068. [Google Scholar] [CrossRef]
- Ballarin, A.S.; Sone, J.S.; Gesualdo, G.C.; Schwamback, D.; Reis, A.; Almagro, A.; Wendland, E.C. CLIMBra—Climate change dataset for Brazil. Sci. Data 2023, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.W.S.; Reboita, M.S. A new look into the South American precipitation patterns: Observation and forecast. Atmosphere 2022, 13, 873. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 2008, 113, D04110. [Google Scholar] [CrossRef]
- Balmaceda-Huarte, R.; Olmo, M.E.; Bettolli, M.L.; Poggi, M.M. Evaluation of multiple reanalyses in reproducing the spatio-temporal variability of temperature and precipitation indices over southern South America. Int. J. Climatol. 2021, 41, 5572–5595. [Google Scholar] [CrossRef]
- Lagos-Zúñiga, M.A.; Balmaceda-Huarte, R.; Regoto, P.; Torrez, L.; Olmo, M.; Lyra, A.; Pareja-Quispe, D.; Bettolli, M.L. Extreme indices of temperature and precipitation in South America: Trends and intercomparison of regional climate models. Clim. Dyn. 2022. Under Review. [Google Scholar] [CrossRef]
- Martinez, D.M.; Solman, S.A. Synoptic patterns associated with extreme precipitation events over southeastern South America during spring and summer seasons. Int. J. Climatol. 2022, 42, 10387–10406. [Google Scholar] [CrossRef]
- Ferreira, G.W.S.; Reboita, M.S.; Ribeiro, J.G.M.; Carvalho, V.S.B.; Santiago, M.E.V.; Silva, P.L.S.S.; Baldoni, T.C.; Souza, C.A. Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. Clim. Dyn. 2023; Under Review. [Google Scholar]
- Ferreira, G.W.S.; Reboita, M.S.; Ribeiro, J.G.M.; Souza, C.A. Assessment of precipitation and hydrological droughts in South America through statistically downscaled CMIP6 projections. Climate 2023, 11, 166. [Google Scholar] [CrossRef]
- Rupp, D.E.; Abatzoglou, J.T.; Hegewisch, K.C.; Mote, P.W. Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos. 2013, 118, 10884–10906. [Google Scholar] [CrossRef]
- Dias, C.G.; Reboita, M.S. Assessment of CMIP6 simulations over tropical South America. Rev. Bras. Geogr. Fis. 2021, 14, 1282–1295. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Xu, Z.; Han, Y.; Guo, W. Evaluation of CMIP6 models toward dynamical downscaling over 14 CORDEX domains. Clim. Dyn. 2022, 1–15. [Google Scholar] [CrossRef]
- Admasu, L.M.; Grant, L.; Thiery, W. Exploring global climate model downscaling based on tile-level output. J. Appl. Meteorol. Climatol. 2023, 62, 171–190. [Google Scholar] [CrossRef]
- Tram-Anh, Q.; Ngo-Duc, T.; Espagne, E.; Trinh-Tuan, L. A 10-km CMIP6 downscaled dataset of temperature and precipitation for historical and future Vietnam climate. Sci. Data 2023, 10, 257. [Google Scholar] [CrossRef]
- Lovato, T.; Peano, D. CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP historical. Version 20200616. Earth Syst. Grid Fed. 2020. [Google Scholar] [CrossRef]
- Lovato, T.; Peano, D.; Butenschön, M.; Materia, S.; Iovino, D.; Scoccimarro, E.; Fogli, P.G.; Cherchi, A.; Bellucci, A.; Gualdi, S.; et al. CMIP6 simulations with the CMCC Earth System Model (CMCC1077 ESM2). J. Adv. Model. Earth Syst. 2022, 14, e2021MS002814. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arneth, A.; Arsouze, T.; Bergman, T.; Bernardello, R.; Bousetta, S.; Caron, L.P.; et al. The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Krasting, J.P.; John, J.G.; Blanton, C.; McHugh, C.; Nikonov, S.; Radhakrishnan, A.; Rand, K.; Zadeh, N.T.; Balaji, V.; Durachta, J.; et al. NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Version 20190726. Earth Syst. Grid Fed. 2018. [Google Scholar] [CrossRef]
- Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubel, A.; Foujols, M.A.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.; Ghattas, J.; et al. IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. Version 20180803. Earth Syst. Grid Fed. 2018. [Google Scholar] [CrossRef]
- Tatebe, H.; Watanabe, M. MIROC MIROC6 model output prepared for CMIP6 CMIP historical. Version 20181212. Earth Syst. Grid Fed. 2018. [Google Scholar] [CrossRef]
- Wieners, K.H.; Giorgetta, M.; Jungclaus, J.; Reick, C.; Esch, M.; Bittner, M.; Legutke, S.; Schupfner, M.; Wachsmann, F.; Gayler, V.; et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical. Version 20190710. Earth Syst. Grid Fed. 2019. [Google Scholar] [CrossRef]
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. Version 20190222. Earth Syst. Grid Fed. 2019. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socio-economic Pathways and their energy, land use, and greenhouse gas emissions implications: A review. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Nguyen, P.A.; Abbott, M.; Nguyen, T.L.T. The development and cost of renewable energy 595 resources in Vietnam. Util. Policy 2019, 57, 59–66. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by Quantile Mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Ali, S.; Eum, H.-I.; Cho, J.; Dan, L.; Khan, F.; Dairaku, K.; Shresta, M.L.; Hwang, S.; Nasim, W.; Khan, I.A.; et al. Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos. Res. 2019, 222, 114–133. [Google Scholar] [CrossRef]
- Xavier, A.C.F.; Martins, L.P.; Rudke, A.P.; Morais, M.V.B.; Martins, J.A.; Blain, G.C. Evaluation of Quantile Delta Mapping as a bias-correction method in maximum rainfall dataset from downscaled models in Sao Paulo state (Brazil). Int. J. Climatol. 2022, 42, 175–190. [Google Scholar] [CrossRef]
- Ibebuchi, C.C.; Schönbein, D.; Adakudlu, M.; Xoplaki, E.; Paeth, H. Comparison of three techniques to adjust daily precipitation biases from regional climate models over Germany. Water 2022, 14, 600. [Google Scholar] [CrossRef]
- Fan, L.-J.; Yan, Z.-W.; Chen, D.; Li, Z. Assessment of total and extreme precipitation over central Asia via statistical downscaling: Added value and multi-model ensemble projection. Adv. Clim. Change Serv. 2023, 14, 62–76. [Google Scholar] [CrossRef]
- Logan, T.; Aoun, A.; Bourgault, P.; Huard, D.; Lavoie, J.; Rondeau-Genesse, G.; Smith, J.T.; Alegre, R.; Barnes, C.; Biner, S.; et al. Ouranosinc/xclim: v0.37.0 (v0.37.0). Zenodo 2022. [Google Scholar] [CrossRef]
- Silva, E.D.; Reboita, M.S. Estudo da Precipitação no Estado de Minas Gerais—MG. Rev. Bras. Climatol. 2013, 13, 120–136. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; de Souza, M.R.; Llopart, M. Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int. J. Climatol. 2018, 38, 2866–2879. [Google Scholar] [CrossRef]
- Gan, M.A.; Rao, V.B.; Moscati, M.C.L. South American monsoon indices. Atmos. Sci. Lett. 2006, 6, 219–233. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Kinter, J.L., III; Frauenweld, O.W. A global gridded dataset of the characteristics of the rainy and dry seasons. Bull. Am. Meteorol. Soc. 2019, 100, 1315–1328. [Google Scholar] [CrossRef]
- Reboita, M.S.; Teodoro, T.A.; Ferreira, G.W.S.; Souza, C.A. Ciclo de vida do sistema de monção da América do Sul: Clima presente e futuro. Rev. Bras. Geogr. Fis. 2022, 15, 343–358. [Google Scholar] [CrossRef]
- Silva, A.E.; Carvalho, L.M.V. Large-scale index for South America Monsoon (LISAM). Atmos. Sci. Lett. 2008, 8, 51–57. [Google Scholar] [CrossRef]
- Raia, A.; Cavalcanti, I.F.A. The life cycle of the South American Monsoon System. J. Clim. 2008, 21, 6227–6246. [Google Scholar] [CrossRef]
- Rodrigues, M.A.M.; Garcia, S.R.; Kayano, M.T.; Calheiros, A.J.P.; Andreoli, R.V. Onset and demise dates of the rainy season in the South American monsoon region: A cluster analysis result. Int. J. Climatol. 2022, 42, 1354–1368. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank correlation methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Li, J.; Huo, R.; Chen, H.; Zhao, Y.; Zhao, T. Comparative assessment and future prediction using CMIP6 and CMIP5 for annual precipitation and extreme precipitation simulation. Front. Earth Sci. 2021, 9, 2021. [Google Scholar] [CrossRef]
- Huang, F.; Xu, Z.; Guo, W. The linkage between CMIP5 climate models’ abilities to simulate precipitation and vector winds. Clim. Dyn. 2020, 54, 4953–4970. [Google Scholar] [CrossRef]
- Almazroui, M.; Ashfaq, M.; Islam, M.N.; Kamil, S.; Abid, M.A.; O’Brien, E.; Ismail, M.; Reboita, M.S.; Sörensson, A.A.; Arias, P.A.; et al. Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Syst. Environ. 2021, 5, 155–183. [Google Scholar] [CrossRef]
- Arias, P.A.; Ortega, G.; Villegas, L.D.; Martínez, J. Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Rev. Fac. Ing. 2021, 100, 75–96. [Google Scholar] [CrossRef]
- Firpo, M.A.F.; Guimarães, B.S.; Dantas, L.G.; Silva, M.G.B.; Alves, L.M.; Chadwick, R.; Llopart, M.P.; Oliveira, G.S. Assessment of CMIP6 models’ performance in simulating present-day climate in Brazil. Front. Clim. 2022, 4, 2022. [Google Scholar] [CrossRef]
- Ortega, G.; Arias, P.A.; Villegas, J.C.; Marquet, P.A.; Nobre, P. Present-day and future climate over Central and South America according to CMIP5/CMIP6 models. Int. J. Climatol. 2021, 41, 6713–6735. [Google Scholar] [CrossRef]
- Khairoutdinov, M.; Randall, D.; DeMott, C. Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci. 2005, 62, 2136–2154. [Google Scholar] [CrossRef]
- Torres, R.R.; Marengo, J.A. Uncertainty assessments of climate change projections over South America. Theor. Appl. Climatol. 2013, 112, 253–272. [Google Scholar] [CrossRef]
- Rivera, J.A.; Arnould, G. Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmos. Res. 2020, 241, 104953. [Google Scholar] [CrossRef]
- Reboita, M.S.; Kuki, C.A.C.; Marrafon, V.H.; Souza, C.A.; Ferreira, G.W.S.; Teodoro, T.; Lima, J.W.M. South America climate change revealed through climate indices projected by GCMs and Eta-RCM ensembles. Clim. Dyn. 2021, 58, 459–485. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Souza, C.A.; Baldoni, T.C.; Silva, P.L.L.S.; Ferreira, G.W.S. Future projections of extreme precipitation climate indices over South America based on CORDEX-CORE multimodel ensemble. Atmosphere 2022, 13, 1463. [Google Scholar] [CrossRef]
- Ruffato-Ferreira, V.; Barreto, R.C.; Júnior, A.O.; Silva, W.L.; Viana, D.B.; Nascimento, J.A.S.; Freitas, M.A.V. A foundation for the strategic long-term planning of the renewable energy sector in Brazil: Hydroelectricity and wind energy in the face of climate change scenarios. Renew. Sustain. Energy Rev. 2017, 72, 1124–1137. [Google Scholar] [CrossRef]
- De Jong, P.; Barreto, T.B.; Tanajura, C.A.S.; Oliveira-Esquerre, K.P.; Kiperstok, A.; Torres, E.A. The impact of regional climate change on hydroelectric resources in South America. Renew. Energy 2021, 173, 76–91. [Google Scholar] [CrossRef]
- Torres, R.R.; Benassi, R.B.; Martins, F.B.; Lapola, D.M. Projected impacts of 1.5 and 2 °C global warming on temperature and precipitation patterns in South America. Int. J. Climatol. 2021, 42, 1597–1611. [Google Scholar] [CrossRef]
- Tavares, P.S.; Acosta, R.; Nobre, P.; Resende, N.C.; Chou, S.C.; Lyra, A.A. Water balance components and climate extremes over Brazil under 1.5 °C and 2.0 °C of global warming scenarios. Reg. Environ. Change 2023, 23, 40. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, F.J.; Oliveira, C.P.; Avila-Diaz, A. Evaluation of extreme precipitation climate indices and their projected changes for Brazil: From CMIP3 to CMIP6. Weather Clim. Extrem. 2022, 38, 100511. [Google Scholar] [CrossRef]
- Schroth, G.; Läderach, P.; Martinez-Valle, A.I.; Bunn, C.; Jassogne, L. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Sci. Total Environ. 2016, 556, 231–241. [Google Scholar] [CrossRef]
- Dhiman, R.C.; Pahwa, S.; Dhillon, G.P.S.; Dash, A.P. Climate change and threat of vector-borne diseases in India: Are we prepared? Parasitol. Res. 2010, 106, 763–773. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Rajulapati, C.R.; Andreadis, K.M.; Foufoula-Georgiou, E.; Clark, M.P.; Trenberth, K.E. Probabilistic Evaluation of drought in CMIP6 simulations. Earth’s Future 2021, 9, e2021EF002150. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global data assessment and analysis of drought characteristics based on CMIP6. J. Hydrol. 2021, 596, 126091. [Google Scholar] [CrossRef]
- Lima, A.O.; Lyra, G.B.; Abreu, M.C.; Oliveira-Júnior, J.F.; Zeri, M.; Cunha-Zeri, G. Extreme rainfall events over Rio de Janeiro state, Brazil: Characterization using probability distribution functions and clustering analysis. Atmos. Res. 2021, 247, 105221. [Google Scholar] [CrossRef]
- Aguiar, L.F.; Cataldi, M. Social and environmental vulnerability in southeast Brazil associated with the South Atlantic Convergence Zone. Nat. Hazards 2021, 109, 2423–2437. [Google Scholar] [CrossRef]
- Leite-Filho, A.T.; Costa, M.H.; Fu, R. The southern Amazon rainy season: The role of deforestation and its interactions with large-scale mechanisms. Int. J. Climatol. 2019, 40, 2328–2341. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Dubreil, V.; Funatsu, B.; Delahaye, F.; de Oliveira, C.H.; Rodrigues-Filho, S.; Saito, C.H.; Fetter, R. Rainfall patterns in the Southern Amazon: A chronological perspective (1971–2010). Clim. Change 2015, 132, 251–264. [Google Scholar] [CrossRef]
R2—Midwest Brazil—10° S–20° S 50° W–60° W | |||
---|---|---|---|
Reference | Onset (Pentads) | Demise (Pentads) | Length (Pentads) |
This study | 57–59 | 20–23 | 34–36 |
Gan et al. [9] | 51–63 | 22–25 | 33–44 |
Bombardi and Carvalho [10] | 58–61 | 18–21 | 36–38 |
Ashfaq et al. [12]—GPCP | 59 | 18–20 | 32–34 |
Ashfaq et al. [12]—RegCM4 ensemble | 57–61 | 17–19 | 31–35 |
Gan et al. [73] | 56–59 | 20–23 | 34–40 |
Bombardi et al. [74] | 58 | 20 | 35 |
Reboita et al. [75] | 57–59 | 20–22 | 32–34 |
Silva and Carvalho [76] | 58–64 | 20–27 | 31–41 |
Raia and Cavalcanti [77] | 60 | 18 | 31 |
Rodrigues et al. [78] | 58 | 27 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reboita, M.S.; Ferreira, G.W.d.S.; Ribeiro, J.G.M.; da Rocha, R.P.; Rao, V.B. South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs. Atmosphere 2023, 14, 1380. https://doi.org/10.3390/atmos14091380
Reboita MS, Ferreira GWdS, Ribeiro JGM, da Rocha RP, Rao VB. South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs. Atmosphere. 2023; 14(9):1380. https://doi.org/10.3390/atmos14091380
Chicago/Turabian StyleReboita, Michelle Simões, Glauber Willian de Souza Ferreira, João Gabriel Martins Ribeiro, Rosmeri Porfírio da Rocha, and Vadlamudi Brahmananda Rao. 2023. "South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs" Atmosphere 14, no. 9: 1380. https://doi.org/10.3390/atmos14091380
APA StyleReboita, M. S., Ferreira, G. W. d. S., Ribeiro, J. G. M., da Rocha, R. P., & Rao, V. B. (2023). South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs. Atmosphere, 14(9), 1380. https://doi.org/10.3390/atmos14091380