A Comparative Investigation of Light Scattering and Digital Holographic Imaging to Measure Liquid Phase Cloud Droplets
Abstract
:1. Introduction
2. Theory
3. Methods
3.1. Digital Holographic Imager (DHI)
3.2. The Fog Monitor (FM120)
4. Results and Analysis
4.1. Correlation Analysis of Cloud Microphysical Parameters
4.2. The Analysis of Droplets Size Distribution
4.3. The Analysis of Reasons Causing the Difference
4.4. The Effects Caused by Droplets Loss
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramanathan, V.; Barkstrom, B.R.; Harrison, E.F. Climate and the Earth’s Radiation Budget. Phys. Today 1989, 42, 22–32. [Google Scholar] [CrossRef]
- Rossow, W.B.; Lacis, A.A. Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part II. Cloud Properties and Radiative Effects. J. Clim. 1990, 3, 1204–1253. [Google Scholar] [CrossRef]
- Bergman, J.W.; Salby, M.L. The Role of Cloud Diurnal Variations in the Time-Mean Energy Budget. J. Clim. 1997, 10, 1114–1124. [Google Scholar] [CrossRef]
- Pinto, I.; Jack, C.; Lennard, C.; Tilmes, S.; Odoulami, R.C. Africa’s Climate Response to Solar Radiation Management With Stratospheric Aerosol. Geophys. Res. Lett. 2020, 47, e2019GL086047. [Google Scholar] [CrossRef]
- Zheng, X.; Xi, B.; Dong, X.; Logan, T.; Wang, Y.; Wu, P. Investigation of aerosol–cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements. Atmos. Chem. Phys. 2020, 20, 3483–3501. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, Y.; Li, J.; Letu, H.; Su, Y.; Chen, T.; Wu, X. Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations. Int. J. Climatol. 2019, 39, 2612–2629. [Google Scholar] [CrossRef]
- Li, D.; Zhao, C.; Yue, Z.; Liu, C.; Sun, Y.; Cohen, J.B. Response of Cloud and Precipitation Properties to Seeding at a Supercooled Cloud-Top Layer. Earth Space Sci. 2022, 9, e2021EA001791. [Google Scholar] [CrossRef]
- Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607–613. [Google Scholar] [CrossRef]
- Dessler, A.E. Cloud variations and the Earth’s energy budget. Geophys. Res. Lett. 2011, 38, L19701. [Google Scholar] [CrossRef]
- Kauppinen, J.; Heinonen, J.; Malmi, P. Influence of Relative Humidity and Clouds on the Global Mean Surface Temperature. Energy Environ. 2014, 25, 389–399. [Google Scholar] [CrossRef]
- Tisler, P.; Zapadinsky, E.; Kulmala, M. Initiation of rain by turbulence-induced condensational growth of cloud droplets. Geophys. Res. Lett. 2005, 32, L06806. [Google Scholar] [CrossRef]
- Wacker, U.; Herbert, F. On different moisture variables in the constitutive equation for condensation growth of cloud drops. Geophys. Res. Lett. 1998, 25, 4473–4476. [Google Scholar] [CrossRef]
- Yang, F.; Xue, H.; Deng, Z.; Zhao, C.; Zhang, Q. A closure study of cloud condensation nuclei in the North China Plain using droplet kinetic condensational growth model. Atmos. Chem. Phys. 2012, 12, 5399–5411. [Google Scholar] [CrossRef]
- Jensen, J.B.; Nugent, A.D. Condensational Growth of Drops Formed on Giant Sea-Salt Aerosol Particles. J. Atmos. Sci. 2017, 74, 679–697. [Google Scholar] [CrossRef]
- Devenish, B.J.; Bartello, P.; Brenguier, J.L.; Collins, L.R.; Grabowski, W.W.; Ijzermans, R.H.A.; Malinowski, S.P.; Reeks, M.W.; Vassilicos, J.C.; Wang, L.P.; et al. Droplet growth in warm turbulent clouds. Q. J. R. Meteorol. Soc. 2012, 138, 1401–1429. [Google Scholar] [CrossRef]
- Kumar, B.; Götzfried, P.; Suresh, N.; Schumacher, J.; Shaw, R.A. Scale Dependence of Cloud Microphysical Response to Turbulent Entrainment and Mixing. J. Adv. Model. Earth Syst. 2018, 10, 2777–2785. [Google Scholar] [CrossRef]
- Thomas, S.; Ovchinnikov, M.; Yang, F.; van der Voort, D.; Cantrell, W.; Krueger, S.K.; Shaw, R.A. Scaling of an Atmospheric Model to Simulate Turbulence and Cloud Microphysics in the Pi Chamber. J. Adv. Model. Earth Syst. 2019, 11, 1981–1994. [Google Scholar] [CrossRef]
- Cannon, F.; Cordeira, J.M.; Hecht, C.W.; Norris, J.R.; Michaelis, A.; Demirdjian, R.; Ralph, F.M. GPM Satellite Radar Observations of Precipitation Mechanisms in Atmospheric Rivers. Mon. Weather Rev. 2020, 148, 1449–1463. [Google Scholar] [CrossRef]
- Wang, Y.; Gueye, M.; Greybush, S.J.; Greatrex, H.; Whalen, A.J.; Ssentongo, P.; Zhang, F.; Jenkins, G.S.; Schiff, S.J. Verification of operational numerical weather prediction model forecasts of precipitation using satellite rainfall estimates over Africa. Meteorol. Appl. 2023, 30, e2112. [Google Scholar] [CrossRef]
- Guo, X.; Fu, D.; Li, X.; Hu, Z.; Lei, H.; Xiao, H.; Hong, Y. Advances in cloud physics and weather modification in China. Adv. Atmos. Sci. 2015, 32, 230–249. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Z.; Zhao, D.; Ali, M.A.; Hu, C.; Zhang, Y.; Liao, K. Automatic Detection of Daytime Sea Fog Based on Supervised Classification Techniques for FY-3D Satellite. Remote Sens. 2023, 15, 2283. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Tan, W.; Chen, S.; Chen, H.; Guo, P.; Sun, Z.; Hu, R.; Xu, Q.; Zhang, M.; et al. Retrieval of Water Cloud Optical and Microphysical Properties from Combined Multiwavelength Lidar and Radar Data. Remote Sens. 2021, 13, 4396. [Google Scholar] [CrossRef]
- Lei, S.; Zhu, X.; Ling, Y.; Teng, S.; Yao, B. Tropical Tropopause Layer Cloud Properties from Spaceborne Active Observations. Remote Sens. 2023, 15, 1223. [Google Scholar] [CrossRef]
- Gong, S.; Wang, Y.; Guo, J.; Chen, W.; Zhang, Y.; Li, F.; Xun, Y.; Xu, J.; Cheng, X.; Yang, G. Clouds in the Vicinity of the Stratopause Observed with Lidars at Midlatitudes (40.5–41°N) in China. Remote Sens. 2022, 14, 4938. [Google Scholar] [CrossRef]
- Schmidt, J.; Wandinger, U.; Malinka, A. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties. Appl. Opt. 2013, 52, 2235–2247. [Google Scholar] [CrossRef]
- Dupont, J.-C.; Haeffelin, M.; Wærsted, E.; Delanoe, J.; Renard, J.-B.; Preissler, J.; O’Dowd, C. Evaluation of Fog and Low Stratus Cloud Microphysical Properties Derived from In Situ Sensor, Cloud Radar and SYRSOC Algorithm. Atmosphere 2018, 9, 169. [Google Scholar] [CrossRef]
- Vishwakarma, P.; Delanoë, J.; Jorquera, S.; Martinet, P.; Burnet, F.; Bell, A.; Dupont, J.C. Climatology of estimated liquid water content and scaling factor for warm clouds using radar–microwave radiometer synergy. Atmos. Meas. Tech. 2023, 16, 1211–1237. [Google Scholar] [CrossRef]
- Liao, L.; Sassen, K. Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents. Atmos. Res. 1994, 34, 231–248. [Google Scholar] [CrossRef]
- Di, H.; Yuan, Y.; Yan, Q.; Xin, W.; Li, S.; Wang, J.; Wang, Y.; Zhang, L.; Hua, D. Determination of atmospheric column condensate using active and passive remote sensing technology. Atmos. Meas. Tech. 2022, 15, 3555–3567. [Google Scholar] [CrossRef]
- Zhang, H.; Bu, L.; Gao, H.; Huang, X.; Kumar, K.R. Retrieving homogeneous liquid cloud microphysical properties using multiple-field-of-view lidar. J. Appl. Remote Sens. 2018, 12, 046021. [Google Scholar] [CrossRef]
- Marinou, E.; Voudouri, K.A.; Tsikoudi, I.; Drakaki, E.; Tsekeri, A.; Rosoldi, M.; Ene, D.; Baars, H.; O’Connor, E.; Amiridis, V.; et al. Geometrical and Microphysical Properties of Clouds Formed in the Presence of Dust above the Eastern Mediterranean. Remote Sens. 2021, 13, 5001. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Wang, J. Study on the Vertical Structure and the Evolution of Precipitation Particle Spectrum Parameters of Stratocumulus Clouds over North China Based on Aircraft Observation. Remote Sens. 2023, 15, 2168. [Google Scholar] [CrossRef]
- Deng, M.; Mace, G.G. Cirrus Microphysical Properties and Air Motion Statistics Using Cloud Radar Doppler Moments. Part I: Algorithm Description. J. Appl. Meteorol. Climatol. 2006, 45, 1690–1709. [Google Scholar] [CrossRef]
- Austin, R.T.; Stephens, G.L. Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. Algorithm formulation. J. Geophys. Res. Atmos. 2001, 106, 28233–28242. [Google Scholar] [CrossRef]
- Tiitta, P.; Leskinen, A.; Kaikkonen, V.A.; Molkoselkä, E.O.; Mäkynen, A.J.; Joutsensaari, J.; Calderon, S.; Romakkaniemi, S.; Komppula, M. Intercomparison of holographic imaging and single-particle forward light scattering in situ measurements of liquid clouds in changing atmospheric conditions. Atmos. Meas. Tech. 2022, 15, 2993–3009. [Google Scholar] [CrossRef]
- Spiegel, J.K.; Zieger, P.; Bukowiecki, N.; Hammer, E.; Weingartner, E.; Eugster, W. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100). Atmos. Meas. Tech. 2012, 5, 2237–2260. [Google Scholar] [CrossRef]
- Flewellen, J.L.; Minoughan, S.; Garcia, I.L.; Tolar, P. Digital holography-based 3D particle localization for single-molecule tweezer techniques. Biophys. J. 2022, 121, 2538–2549. [Google Scholar] [CrossRef]
- Liu, Z.; Takahashi, T.; Lindsay, D.; Thevar, T.; Sangekar, M.; Watanabe, H.K.; Burns, N.; Watson, J.; Thornton, B. Digital In-Line Holography for Large-Volume Analysis of Vertical Motion of Microscale Marine Plankton and Other Particles. IEEE J. Ocean. Eng. 2021, 46, 1248–1260. [Google Scholar] [CrossRef]
- Rathod, S.; Ghosh, A.; Kulkarni, R. Fast and accurate autofocusing algorithm in digital holography based on particle swarm optimization. Optik 2021, 247, 167946. [Google Scholar] [CrossRef]
- Huang, J.; Cai, W.; Wu, Y.; Wu, X. Recent advances and applications of digital holography in multiphase reactive/nonreactive flows: A review. Meas. Sci. Technol. 2022, 33, 022001. [Google Scholar] [CrossRef]
- Tahara, T.; Kozawa, Y.; Oi, R. Single-path single-shot phase-shifting digital holographic microscopy without a laser light source. Opt. Express 2022, 30, 1182–1194. [Google Scholar] [CrossRef] [PubMed]
- Farzam Rad, V.; Moradi, A.-R. Flat Wall Proximity Effect on Micro-Particle Sedimentation in Non-Newtonian Fluids. Sci. Rep. 2020, 10, 2741. [Google Scholar] [CrossRef]
- Beals, M.J.; Fugal, J.P.; Shaw, R.A.; Lu, J.; Spuler, S.M.; Stith, J.L. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science 2015, 350, 87–90. [Google Scholar] [CrossRef]
- Henneberger, J.; Fugal, J.P.; Stetzer, O.; Lohmann, U. HOLIMO II: A digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds. Atmos. Meas. Tech. 2013, 6, 2975–2987. [Google Scholar] [CrossRef]
- Byeon, H.; Lee, J.; Doh, J.; Lee, S.J. Hybrid bright-field and hologram imaging of cell dynamics. Sci. Rep. 2016, 6, 33750. [Google Scholar] [CrossRef]
- vom Werth, K.L.; Kemper, B.; Kampmeier, S.; Mellmann, A. Application of Digital Holographic Microscopy to Analyze Changes in T-Cell Morphology in Response to Bacterial Challenge. Cells 2023, 12, 762. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, W.-d.; Wu, C. Algal cell viability assessment: The role of environmental factors in phytoplankton population dynamics. Mar. Pollut. Bull. 2023, 189, 114743. [Google Scholar] [CrossRef]
- Carney, S.; Khoo, T.C.; Sheikhsofla, A.; Ghazanfarpour, S.; Sharikova, A.; Mahajan, S.D.; Khmaladze, A.; Petruccelli, J.C. Quantitative phase imaging comparison of digital holographic microscopy and transport of intensity equation phase through simultaneous measurements of live cells. Opt. Lasers Eng. 2023, 166, 107581. [Google Scholar] [CrossRef]
- Pais, D.A.M.; Galrão, P.R.S.; Kryzhanska, A.; Barbau, J.; Isidro, I.A.; Alves, P.M. Holographic Imaging of Insect Cell Cultures: Online Non-Invasive Monitoring of Adeno-Associated Virus Production and Cell Concentration. Processes 2020, 8, 487. [Google Scholar] [CrossRef]
- Nebuloni, R. Empirical relationships between extinction coefficient and visibility in fog. Appl. Opt. 2005, 44, 3795–3804. [Google Scholar] [CrossRef]
- Thomas, M.K. Frequency analysis of digital holography with reconstruction by convolution. Opt. Eng. 2002, 41, 1829–1839. [Google Scholar] [CrossRef]
- Hovenac, E.A.; Lock, J.A. Calibration of the Forward-scattering Spectrometer Probe: Modeling Scattering from a Multimode Laser Beam. J. Atmos. Ocean. Technol. 1993, 10, 518–525. [Google Scholar] [CrossRef]
- Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Leaitch, W.R.; Couture, M.D. The Effect of Calibration of the Forward-Scattering Spectrometer Probe on the Sizing of Cloud Droplets. J. Atmos. Ocean. Technol. 1987, 4, 518–526. [Google Scholar] [CrossRef]
- Gao, P.; Wang, J.; Gao, Y.; Liu, J.; Hua, D. Observation on the Droplet Ranging from 2 to 16 µm in Cloud Droplet Size Distribution Based on Digital Holography. Remote Sens. 2022, 14, 2414. [Google Scholar] [CrossRef]
- La, I.; Yum, S.S.; Gultepe, I.; Yeom, J.M.; Song, J.I.; Cha, J.W. Influence of Quasi-Periodic Oscillation of Atmospheric Variables on Radiation Fog over A Mountainous Region of Korea. Atmosphere 2020, 11, 230. [Google Scholar] [CrossRef]
- Boudala, F.S.; Wu, D.; Isaac, G.A.; Gultepe, I. Seasonal and Microphysical Characteristics of Fog at a Northern Airport in Alberta, Canada. Remote Sens. 2022, 14, 4865. [Google Scholar] [CrossRef]
- Tav, J.; Masson, O.; Burnet, F.; Paulat, P.; Bourrianne, T.; Conil, S.; Pourcelot, L. Determination of Fog-Droplet Deposition Velocity from a Simple Weighing Method. Aerosol Air Qual. Res. 2018, 18, 103–113. [Google Scholar] [CrossRef]
Time | Visibility of FSV (m) | Visibility of DHI (m) | Visibility of FM120 (m) |
---|---|---|---|
13:20 | 32 | 55 | 98 |
18:00 | 63 | 94 | 184 |
20:00 | 69 | 78 | 256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wang, J.; Yang, C.; Zhou, H.; Liu, J.; Hua, D. A Comparative Investigation of Light Scattering and Digital Holographic Imaging to Measure Liquid Phase Cloud Droplets. Atmosphere 2023, 14, 1381. https://doi.org/10.3390/atmos14091381
Zhang C, Wang J, Yang C, Zhou H, Liu J, Hua D. A Comparative Investigation of Light Scattering and Digital Holographic Imaging to Measure Liquid Phase Cloud Droplets. Atmosphere. 2023; 14(9):1381. https://doi.org/10.3390/atmos14091381
Chicago/Turabian StyleZhang, Chuan, Jun Wang, Chenyu Yang, Hao Zhou, Jingjing Liu, and Dengxin Hua. 2023. "A Comparative Investigation of Light Scattering and Digital Holographic Imaging to Measure Liquid Phase Cloud Droplets" Atmosphere 14, no. 9: 1381. https://doi.org/10.3390/atmos14091381
APA StyleZhang, C., Wang, J., Yang, C., Zhou, H., Liu, J., & Hua, D. (2023). A Comparative Investigation of Light Scattering and Digital Holographic Imaging to Measure Liquid Phase Cloud Droplets. Atmosphere, 14(9), 1381. https://doi.org/10.3390/atmos14091381