Spatiotemporal Variation and Driving Factors for NO2 in Mid-Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Sources
2.2.1. NO2 Concentration Data
2.2.2. Socioeconomic Data and Meteorological Data
2.3. Method
2.3.1. k-Means Clustering
2.3.2. Geographically and Temporally Weighted Regression Model (GTWR)
3. Results and Discussion
3.1. Classification of Urban NO2 Concentration Level
3.2. Spatial and Temporal Trends in NO2 Concentrations
3.3. Model Results
3.3.1. Model Parameter Results
3.3.2. The Influence of Social Factors on Urban NO2 Concentrations
3.3.3. The Influence of Meteorological Factors on Urban NO2 Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Wang, Y.; Feng, C.; Liang, S.; Liu, Y.; Du, H.; Jia, N. Understanding the industrial NOx and SO2 pollutant emissions in China from sector linkage perspective. Sci. Total Environ. 2021, 770, 145242. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.-Y.; Zhang, Y.-L.; Lin, Y.-C.; Li, L.; Xie, F.; Hu, J.; Mozaffar, A.; Cao, F. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season. Chemosphere 2021, 263, 128025. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qi, Y.; Qu, W.; Qu, W.; Shi, J.; Zhang, D.; Liu, Y.; Zhang, Y.; Zhang, W.; Ren, D.; et al. PM2.5 source apportionment identified with total and soluble elements in positive matrix factorization. Sci. Total Environ. 2023, 858, 159948. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Zheng, X.-Y.; Chung, K.F.; Zhong, N.-S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 2016, 388, 1939–1951. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, L.; Zhang, Y.; Zhao, Y.; Liu, Y. Air pollution: A culprit of lung cancer. J. Hazard. Mater. 2022, 434, 128937. [Google Scholar] [CrossRef] [PubMed]
- Buoli, M.; Grassi, S.; Caldiroli, A.; Carnevali, G.S.; Mucci, F.; Iodice, S.; Cantone, L.; Pergoli, L.; Bollati, V. Is there a link between air pollution and mental disorders? Environ. Int. 2018, 118, 154–168. [Google Scholar] [CrossRef]
- Deng, Q.; Lu, C.; Norbäck, D.; Bornehag, C.-G.; Zhang, Y.; Liu, W.; Yuan, H.; Sundell, J. Early life exposure to ambient air pollution and childhood asthma in China. Environ. Res. 2015, 143, 83–92. [Google Scholar] [CrossRef]
- Itahashi, S.; Ge, B.; Sato, K.; Fu, J.S.; Wang, X.; Yamaji, K.; Nagashima, T.; Li, J.; Kajino, M.; Liao, H.; et al. MICS-Asia III: Overview of model intercomparison and evaluation of acid deposition over Asia. Atmos. Chem. Phys. 2020, 20, 2667–2693. [Google Scholar] [CrossRef]
- Silvern, R.F.; Jacob, D.J.; Mickley, L.J.; Sulprizio, M.P.; Travis, K.R.; Marais, E.A.; Cohen, R.C.; Laughner, J.L.; Choi, S.; Joiner, J.; et al. Using satellite observations of tropospheric NO2 columns to infer long-term trends in US NOx emissions: The importance of accounting for the free tropospheric NO2 background. Atmos. Chem. Phys. 2019, 19, 8863–8878. [Google Scholar] [CrossRef]
- Huang, G.; Sun, K. Non-negligible impacts of clean air regulations on the reduction of tropospheric NO2 over East China during the COVID-19 pandemic observed by OMI and TROPOMI. Sci. Total Environ. 2020, 745, 141023. [Google Scholar] [CrossRef]
- Zheng, C.; Zhao, C.; Li, Y.; Wu, X.; Zhang, K.; Gao, J.; Qiao, Q.; Ren, Y.; Zhang, X.; Chai, F. Spatial and temporal distribution of NO2 and SO2 in Inner Mongolia urban agglomeration obtained from satellite remote sensing and ground observations. Atmos. Environ. 2018, 188, 50–59. [Google Scholar] [CrossRef]
- De Hoogh, K.; Saucy, A.; Shtein, A.; Schwartz, J.; West, E.A.; Strassmann, A.; Puhan, M.; Röösli, M.; Stafoggia, M.; Kloog, I. Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland. Environ. Sci. Technol. 2019, 53, 10279–10287. [Google Scholar] [CrossRef] [PubMed]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area. Atmos. Environ. 2013, 69, 345–353. [Google Scholar] [CrossRef]
- Hůnová, I.; Bäumelt, V.; Modlík, M. Long-term trends in nitrogen oxides at different types of monitoring stations in the Czech Republic. Sci. Total Environ. 2020, 699, 134378. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, F.; Feng, S.; Xia, Z.; Zheng, Y.; Lyu, X.; Zhang, L.; Lou, C. Increased diurnal difference of NO2 concentrations and its impact on recent ozone pollution in eastern China in summer. Sci. Total Environ. 2023, 858, 159767. [Google Scholar] [CrossRef]
- Cui, Y.; Zha, H.; Dang, Y.; Qiu, L.; He, Q.; Jiang, L. Spatio-Temporal Heterogeneous Impacts of the Drivers of NO2 Pollution in Chinese Cities: Based on Satellite Observation Data. Remote Sens. 2022, 14, 3487. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, Q.; Geng, G.; Chen, C.; Shi, Q.; Cui, M.; Lei, Y.; He, K. Changes in China’s anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth Syst. Sci. Data 2021, 13, 2895–2907. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Cui, L.; Fu, H.; Zhang, L.; Kong, L.; Chen, W.; Chen, J. Air pollution characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors. Sci. Total Environ. 2019, 648, 902–915. [Google Scholar] [CrossRef]
- Yang, J.; Ji, Z.; Kang, S.; Zhang, Q.; Chen, X.; Lee, S.-Y. Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environ. Pollut. 2019, 254, 112952. [Google Scholar] [CrossRef]
- Xu, B.; Zhong, R.; Liu, D.; Liu, Y. Investigating the impact of energy consumption and nitrogen fertilizer on NOx emissions in China based on the environmental Kuznets curve. Environ. Dev. Sustain. 2021, 23, 17590–17605. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Qiu, Y.; Liu, L.; Dong, Z. Spatially differentiated effects of socioeconomic factors on China’s NOx generation from energy consumption: Implications for mitigation policy. J. Environ. Manag. 2019, 250, 109417. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiu, Y.; He, S.; Liu, N.; Xiao, C.; Liu, L. Investigating the driving forces of NOx generation from energy consumption in China. J. Clean. Prod. 2018, 184, 836–846. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Ding, S.; Xu, X.; Liu, L.; Dong, L.; Feng, Y. Uncovering temporal-spatial drivers of vehicular NOx emissions in China. J. Clean. Prod. 2021, 288, 125635. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Huo, T.; Streets, D.G.; Wang, C. Investigating the spatio-temporal influences of urbanization and other socioeconomic factors on city-level industrial NOx emissions: A case study in China. Environ. Impact Assess. Rev. 2023, 99, 106998. [Google Scholar] [CrossRef]
- Zhang, G.; Han, J.; Su, B. Contributions of cleaner production and end-of-pipe treatment to NOx emissions and intensity reductions in China, 1997–2018. J. Environ. Manag. 2023, 326, 116822. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhao, L.; Ding, S.; Liang, S.; Dong, L.; Wang, J.; Feng, Y.; Liu, L. Mapping economic drivers of China’s NOx emissions due to energy consumption. J. Clean. Prod. 2019, 241, 118130. [Google Scholar] [CrossRef]
- Enkhbat, E.; Geng, Y.; Zhang, X.; Jiang, H.; Liu, J.; Wu, D. Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis. Sustainability 2020, 12, 3185. [Google Scholar] [CrossRef]
- Guo, S.; Liu, G.; Liu, S. Driving factors of NOX emission reduction in China’s power industry: Based on LMDI decomposition model. Environ. Sci. Pollut. Res. 2023, 30, 51042–51060. [Google Scholar] [CrossRef]
- Liu, X.; Yi, G.; Zhou, X.; Zhang, T.; Lan, Y.; Yu, D.; Wen, B.; Hu, J. Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P. Atmosphere 2021, 12, 1142. [Google Scholar] [CrossRef]
- Yang, L.; Qin, C.; Li, K.; Deng, C.; Liu, Y. Quantifying the Spatiotemporal Heterogeneity of PM2.5 Pollution and Its Determinants in 273 Cities in China. IJERPH 2023, 20, 1183. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, M.; Huang, B.; Wu, C.; Shi, W. Modeling the Spatiotemporal Association Between COVID-19 Transmission and Population Mobility Using Geographically and Temporally Weighted Regression. GeoHealth 2021, 5, e2021GH000402. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, H.; Sun, J.; Tang, R.; Cai, B.; Song, X.; Huang, X.; Huang, J.; Fan, Z. Spatio-temporal characteristics of soil Cd pollution and its influencing factors: A Geographically and temporally weighted regression (GTWR) method. J. Hazard. Mater. 2023, 446, 130613. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Xu, Y.; Wang, C.; Streets, D.G. Analyzing the spatio-temporal variation of the CO2 emissions from district heating systems with “Coal-to-Gas” transition: Evidence from GTWR model and satellite data in China. Sci. Total Environ. 2022, 803, 150083. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. Ministry of Environmental Protection of PRC: Beijing, China, 2012.
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Wang, Z.; Uno, I.; Yumimoto, K.; Itahashi, S.; Chen, X.; Yang, W.; Wang, Z. Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO2 variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations. Atmos. Environ. 2021, 244, 117972. [Google Scholar] [CrossRef]
- Li, D.; Wu, Q.; Wang, H.; Xiao, H.; Xu, Q.; Wang, L.; Feng, J.; Yang, X.; Cheng, H.; Wang, L.; et al. The Spring Festival Effect: The change in NO2 column concentration in China caused by the migration of human activities. Atmos. Pollut. Res. 2021, 12, 101232. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Murrells, T.P.; Andersson, J.; Keenan, M. Have vehicle emissions of primary NO2 peaked? Faraday Discuss. 2016, 189, 439–454. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Chen, S.; Wang, W.; Nie, R. The environmental Kuznets curve for PM2.5 pollution in Beijing-Tianjin-Hebei region of China: A spatial panel data approach. J. Clean. Prod. 2019, 220, 984–994. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhan, Y.; Wang, B.; Li, Z.; Qin, Y.; Zhang, K. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016. Chemosphere 2019, 220, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Q.; van der A, R.; Zheng, B.; Tong, D.; Yan, L.; Zheng, Y.; He, K. Recent reduction in NO x emissions over China: Synthesis of satellite observations and emission inventories. Environ. Res. Lett. 2016, 11, 114002. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, P. The Spatial–Temporal Variation of Tropospheric NO2 over China during 2005 to 2018. Atmosphere 2019, 10, 444. [Google Scholar] [CrossRef]
- Ju, T.; Geng, T.; Li, B.; An, B.; Huang, R.; Fan, J.; Liang, Z.; Duan, J. Impacts of Certain Meteorological Factors on Atmospheric NO2 Concentrations during COVID-19 Lockdown in 2020 in Wuhan, China. Sustainability 2022, 14, 16720. [Google Scholar] [CrossRef]
- Zhan, D.; Kwan, M.-P.; Zhang, W.; Wang, S.; Yu, J. Spatiotemporal Variations and Driving Factors of Air Pollution in China. IJERPH 2017, 14, 1538. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; He, H.; Lu, Y.; Zhou, Z. Driving force analysis of the nitrogen oxides intensity related to electricity sector in China based on the LMDI method. J. Clean. Prod. 2020, 242, 118364. [Google Scholar] [CrossRef]
Variable | Unit | ||
---|---|---|---|
socioeconomic factors | POP | Permanent population density | 10,000 Capita/km2 |
PGDP | GDP per capita | yuan | |
UR | Urbanization rate | % | |
IS | Share of secondary sector output in total GDP | % | |
EC | Electricity consumption of the whole society | kwh | |
CG | Coverage rate of urban green areas | % | |
CV | Civil car vehicles | car | |
meteorological factors | TEM | Average temperatures | °C |
RHU | Relative humidity | % | |
WIN | Average wind speed | m/s | |
PRE | Average precipitation | mm |
LNC | MNC | HNC | ALL | Meteorological | ||
---|---|---|---|---|---|---|
VIF | 3.15–9.17 | 1.19–9.10 | 1.35–6.68 | 1.25–5.29 | 1.56–8.35 | |
Bandwidth | GWR | 1.987 | 0.115 | 0.115 | 0.115 | 0.115 |
GTWR | 0.297 | 0.113 | 0.137 | 0.115 | 0.115 | |
RSS | GWR | 29.310 | 103.427 | 53.258 | 175.326 | 98.54 |
GTWR | 12.678 | 53.389 | 18.978 | 102.387 | 89.667 | |
AICC | GWR | 138.032 | 689.429 | 400.41 | 1062.62 | 943.56 |
GTWR | 137.187 | 614.578 | 365.268 | 947.706 | 824.84 | |
R2 | GWR | 0.402 | 0.638 | 0.707 | 0.662 | 0.795 |
GTWR | 0.741 | 0.813 | 0.896 | 0.802 | 0.831 |
Type of City | Min. | LQ | Med. | UQ | Max. | ||
---|---|---|---|---|---|---|---|
POP | Permanent population density | LNC | −2.339 | −1.088 | −0.573 | −0.033 | 0.002 |
MNC | −1.294 | 0.011 | 0.122 | 0.303 | 1.078 | ||
HNC | −1.482 | −0.328 | −0.119 | 0.111 | 1.047 | ||
ALL | −0.593 | 0.076 | 0.431 | 0.581 | 2.842 | ||
PGDP | GDP per capita | LNC | 0.050 | 0.116 | 1.312 | 2.474 | 5.271 |
MNC | −6.644 | −0.938 | −0.467 | 0.196 | 5.333 | ||
HNC | −2.356 | −1.076 | −0.298 | 0.239 | 1.993 | ||
ALL | −1.962 | −0.645 | −0.311 | 0.054 | 1.560 | ||
UR | Urbanization rate | LNC | −4.173 | −2.292 | −1.430 | −0.502 | −0.421 |
MNC | −2.616 | −0.356 | 0.181 | 0.592 | 6.396 | ||
HNC | −2.054 | −0.274 | 0.065 | 0.546 | 1.316 | ||
ALL | −7.773 | 0.016 | 0.342 | 0.650 | 1.949 | ||
IS | Share of secondary sector output in total GDP | LNC | −0.705 | −0.232 | 0.035 | 0.309 | 0.578 |
MNC | −1.095 | 0.013 | 0.248 | 0.518 | 1.774 | ||
HNC | −0.745 | −0.108 | 0.158 | 0.399 | 1.331 | ||
ALL | −0.151 | 0.252 | 0.393 | 0.516 | 1.436 | ||
EC | Electricity consumption of the whole society | LNC | −0.598 | −0.158 | 0.241 | 0.688 | 0.781 |
MNC | −1.934 | −0.288 | 0.806 | 1.847 | 7.706 | ||
HNC | −0.769 | −0.197 | 0.147 | 0.457 | 2.118 | ||
ALL | −1.148 | 0.168 | 0.520 | 0.840 | 2.508 | ||
CG | Coverage rate of urban green areas | LNC | −1.660 | −0.798 | −0.540 | −0.198 | −0.141 |
MNC | −0.534 | −0.062 | 0.101 | 0.228 | 1.366 | ||
HNC | −0.754 | −0.312 | −0.073 | 0.104 | 0.409 | ||
ALL | −0.433 | −0.082 | 0.068 | 0.170 | 0.739 | ||
CV | Civil car vehicles | LNC | −0.402 | −0.249 | 0.261 | 0.515 | 1.820 |
MNC | −6.679 | −2.100 | −0.826 | 0.223 | 1.689 | ||
HNC | −1.965 | −0.240 | 0.201 | 0.657 | 1.970 | ||
ALL | −1.634 | −0.357 | −0.036 | 0.210 | 1.299 |
Min. | LQ | Med. | UQ | Max. | |
---|---|---|---|---|---|
TEM | −0.951 | −0.502 | −0.411 | −0.344 | −0.064 |
RHU | −0.295 | −0.251 | −0.147 | −0.022 | 0.479 |
WIN | −0.804 | −0.417 | −0.032 | 0.235 | 0.682 |
PRE | −0.588 | −0.241 | −0.116 | −0.007 | 0.714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, M.; Jiang, Y.; Zhao, Q.; Qiu, J.; Li, Y. Spatiotemporal Variation and Driving Factors for NO2 in Mid-Eastern China. Atmosphere 2023, 14, 1369. https://doi.org/10.3390/atmos14091369
Yi M, Jiang Y, Zhao Q, Qiu J, Li Y. Spatiotemporal Variation and Driving Factors for NO2 in Mid-Eastern China. Atmosphere. 2023; 14(9):1369. https://doi.org/10.3390/atmos14091369
Chicago/Turabian StyleYi, Mingjian, Yongqing Jiang, Qiang Zhao, Junxia Qiu, and Yi Li. 2023. "Spatiotemporal Variation and Driving Factors for NO2 in Mid-Eastern China" Atmosphere 14, no. 9: 1369. https://doi.org/10.3390/atmos14091369
APA StyleYi, M., Jiang, Y., Zhao, Q., Qiu, J., & Li, Y. (2023). Spatiotemporal Variation and Driving Factors for NO2 in Mid-Eastern China. Atmosphere, 14(9), 1369. https://doi.org/10.3390/atmos14091369