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Abstract: Nitrogen dioxide (NO2) is one of the major air pollutants in cities across mid-eastern
China. Comprehending the spatial and temporal dynamics of NO2 drivers in various urban areas is
imperative for tailoring effective air control strategies. Using data from ground-based monitoring
stations, we investigated the impact of socioeconomic and meteorological factors on NO2 concen-
trations in cities in mid-eastern China from 2015 to 2021 using the Geographically and Temporally
Weighted Regression (GTWR) model. The findings reveal a notable reduction of over 10% in NO2

concentrations since 2015 in most cities, notably a 50.5% decrease in Bozhou. However, certain
areas within Anhui and Jiangsu have experienced an increase in NO2 concentrations. Significant
spatial heterogeneity is observed in the relationship between NO2 concentrations and influencing
factors. The permanent population density (POP) and the electricity consumption (EC) of the entire
society exhibited the strongest correlations with NO2 concentrations, with average coefficients of
0.431 and 0.520, respectively. Furthermore, other economic factors such as urbanization rate (UR),
the share of secondary sector output in total GDP (IS), and the coverage rate of urban green areas
(CG) were predominantly positively correlated, while GDP per capita (PGDP) and civil car vehicles
(CV) demonstrated primarily negative correlations. Furthermore, we examined the correlations
between four meteorological factors (temperature, relative humidity, wind speed, and precipitation)
and NO2 concentrations. All these factors exhibited negative correlations with NO2 concentrations.
Among them, temperature exhibited the strongest negative correlation, with a coefficient of −0.411.
This research may contribute valuable insights and guidance for developing air emission reduction
policies in various cities in mid-eastern China.

Keywords: nitrogen dioxide (NO2); GTWR; spatial heterogeneity

1. Introduction

Recent years have witnessed rapid urbanization and industrialization in China, result-
ing in a significant rise in air pollution and growing concerns regarding climate issues [1].
NO2, as a major air pollutant, significantly impacts air quality, plays a significant role
in the formation of acid rain and photochemical smog, and serves as a precursor to the
formation of PM2.5 and O3 [2,3]. In addition, NO2 exposure can pose a risk to human
health by stimulating the respiratory system [4], leading to diseases such as pneumonia
and cancer [5] and triggering mental illness and childhood asthma [6,7]. Furthermore,
elevated concentrations of NO2 can negatively impact vegetation growth and harm local
ecosystems [8].

The spatial and temporal analysis of NO2 using satellite data from the Ozone Moni-
toring Instrument (OMI) of the National Aeronautics and Space Administration has been
extensively studied [9]. By analyzing the changes in tropospheric NO2 vertical column
density in East China from 2005 to 2020 to investigate the factors contributing to the reduc-
tion in tropospheric NO2 during the COVID-19 outbreak [10], Zheng et al. [11] analyzed
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the long-term distribution characteristics of NO2 concentrations in the Inner Mongolia
urban cluster from 2005 to 2016 revealing an initial upward trend followed by a subsequent
downward trend. However, OMI satellite data are often limited by poor resolution and a
high number of missing values [12]. Moreover, it does not capture small-scale changes in
concentrations [13]. Consequently, studies investigating spatial and temporal variability
frequently rely on data obtained from ground-based monitoring sites. For example, recent
research conducted by Hůnová et al. [14] documented a significant decrease in NO2 con-
centrations at various locations in the Czech Republic. Similarly, Shen et al. [15] observed
an increase in the diurnal variation in NO2 concentrations in eastern China, which was
attributed to changes in anthropogenic emissions.

Currently, it is a long-term strategic priority for China’s national development to
actively promote pollution reduction. Therefore, investigating the relationship between
changes in NO2 concentration and driving factors has emerged as a prominent research
topic. NO2 concentrations typically vary due to three primary factors: emissions, mete-
orology, and atmospheric chemical processes [16,17]. High temperatures, precipitation,
and higher wind speeds have been identified as beneficial factors in reducing NO2 con-
centrations [18,19]. Social factors, including industrial emissions, traffic emissions, energy
consumption, industrial structure, and population density, have been recognized as essen-
tial influencers affecting NO2 concentrations [20–22]. Wang et al. [23] analyzed the factors
driving vehicle NOx emissions from 2005 to 2015 and identified economic development and
road vehicle carrying capacity as the primary drivers of emissions growth. Xu et al. [24] dis-
covered that different levels of urbanization have varying effects on NOx emissions. Zhang
et al. [25] examined NOx emissions and intensity changes in China and demonstrated that
energy efficiency improvements and end-of-pipe emission reduction treatments were effec-
tive in reducing NOx emissions. They found that the main impediment to reducing NOx
emissions and intensity was the final demand effect, with investment and consumption
effects being the primary influences. These studies have characterized NOx emissions in
urban environments from different perspectives and identified the main source contribu-
tions and potential drivers of NOx in urban environments. However, we also find that
many of these studies have not provided more scientific explanations from the perspective
of urban differences or have not paid enough attention to the relationship between urban
development trajectories and economic structure as reflected in such differences due to the
limited time and space sample size.

Several methods, including structural decomposition analysis [26], index decomposi-
tion analysis [27], logistic mean divided index [28], geographical detector model [29], and
geographically weighted regression models (GWR) [30], have been employed to study the
drivers of NO2 concentration changes. However, these methods only provide singular
insights into NO2 concentration changes, focusing on a specific time or spatial context. The
Geographically and Temporally Weighted Regression (GTWR) model extends the GWR
model by constructing a matrix considering spatial and temporal distances. Consequently,
it enables a comprehensive reflection of the spatial location characteristics of the model and
the influence of temporal factors [31]. The GTWR model has been extensively employed in
numerous studies to investigate the spatiotemporal heterogeneity between dependent and
independent variables. These studies have examined the impact of population movement
on the spread of COVID-19 [32] and identified the primary influences on soil Cd pollution
in diverse regions [33], and the spatiotemporal variation in CO2 emissions resulting from
the ‘coal-to-gas’ conversion in heating areas [34].

In this study, we investigate the trends and spatial characteristics of NO2 concen-
trations in central-eastern Chinese cities. The data used for analysis was collected from
Chinese air quality monitoring stations between 2015 and 2021. Furthermore, we employ
the GTWR model to analyze the spatial and temporal distribution characteristics of the
factors influencing changes in NO2 concentrations. This work aims to understand the
trends in nitrogen dioxide concentrations in different cities in the region in recent years
and to identify the drivers behind these trends. This may be critical for population health
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and environmental protection and provide valuable policy insights and inspiration for the
cities involved.

2. Materials and Methods
2.1. Study Areas

The study area encompasses six provincial administrative units in mid-eastern China:
Shandong, Henan, Anhui, Jiangsu, Zhejiang, and Shanghai. The topography of each
province is as follows: Anhui Province is characterized by plains, hills, and low mountains.
The terrain generally exhibits a “high in the south and low in the north” pattern. Zhejiang
Province is elevated in the southwest and descends toward the northeast, with mountains
and hills being the dominant features. Shandong Province displays a diverse topography,
including mountains, hills, and plains. Jiangsu Province is primarily flat and low-lying,
mainly comprising plains, while some hilly terrain can be found in the southwest. Henan
Province features a mountainous west and a flat east. Shanghai is situated on the front of
the Yangtze River Delta Plain, with its terrain being predominantly flat. Figure 1 shows the
geographic location of the study area and the distribution of air quality monitoring stations.
According to the China Statistical Yearbook in 2022 (http://www.stats.gov.cn/sj/ndsj/
2022/indexch.htm, accessed on 1 February 2023), the six provincial administrative units
within the study area account for 36.89% of China’s GDP and 30.94% of the country’s total
population. This region holds great significance in China because it includes the Yangtze
River Delta urban agglomeration, which is one of the three largest urban agglomerations in
the country. Consequently, the study area has experienced rapid development in recent
years, causing advanced industrialization and a substantial influx of people. However, the
area’s developed economy, dense population, and high level of industrialization have also
contributed to its overall poor air quality.
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2.2. Data Sources
2.2.1. NO2 Concentration Data

Hourly NO2 concentration data for 2015–2021 were obtained from the China General
Environmental Monitoring Station (http://106.37.208.233:20035/, accessed on 1 February
2023). As of 2023, the country has established over 2000 monitoring stations that measure
and record local PM2.5, PM10, SO2, NO2, O3, and CO concentrations on an hourly basis.
Every city in the study area has at least one monitoring site, and for cities with multiple
monitoring sites, we averaged the corresponding data. Before utilizing the data, any

http://www.stats.gov.cn/sj/ndsj/2022/indexch.htm
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instances of zero observations were eliminated. To derive daily, monthly, quarterly, and
annual concentrations for each city, arithmetic averaging was applied in accordance with
the Chinese Ambient Air Quality Standard (GB3095-2012) [35]. This involved ensuring a
minimum of 20 hourly average concentrations or sampling times per day, at least 27 daily
average concentrations per month, and at least 324 daily average concentrations per year.

2.2.2. Socioeconomic Data and Meteorological Data

Owing to the unavailability of data for county-level cities, this study focuses on col-
lecting socioeconomic data from 74 prefecture-level cities within the study area from 2015
to 2021. The data are obtained from the China Statistical Yearbook and the China Urban
Statistical Yearbook, encompassing a range of statistical indicators, including resident pop-
ulation density (POP), GDP per capita (PGDP), urbanization rate (UR), the proportion of
secondary industry output to total GDP (IS), social electricity consumption (EC), greening
coverage of built-up areas (CG), and civilian car ownership (CV). A total of 4144 data sam-
ples were collected, with each indicator sourced from the corresponding year’s statistical
yearbook to ensure data consistency across cities. The meteorological data for the period
of 2015 to 2021 were acquired from the National Centers for Environmental Information
(https://www.ncei.noaa.gov/, accessed on 1 February 2023). The data encompass temper-
ature (TEM), precipitation (PRE), relative humidity (RHU), and wind speed (WIN). Daily
averages for each meteorological parameter were computed by averaging four observations
taken at 02:00, 08:00, 14:00, and 20:00 h, and these values were then aggregated to calculate
monthly averages. A comprehensive description of the variables is provided in Table 1.

Table 1. Statistical description of each variable used in the GTWR model.

Variable Unit

socioeconomic
factors

POP Permanent population density 10,000 Capita/km2

PGDP GDP per capita yuan
UR Urbanization rate %

IS Share of secondary sector output
in total GDP %

EC Electricity consumption of the
whole society kwh

CG Coverage rate of urban green
areas %

CV Civil car vehicles car

meteorological
factors

TEM Average temperatures ◦C
RHU Relative humidity %
WIN Average wind speed m/s
PRE Average precipitation mm

2.3. Method
2.3.1. k-Means Clustering

Clustering refers to gathering samples with similar characteristics and dividing sam-
ples with dissimilar characteristics into categories [36]. Recently, the k-means clustering
algorithm has gained popularity in data analysis applications due to its ease of imple-
mentation, flexibility, and scalability. The k-means clustering algorithm utilizes Euclidean
distance as a measure of similarity between sample points, where closer sample points
indicate a higher degree of similarity. The criterion function for the k-means algorithm is
the sum of squares error (SSE), which measures the density of the sample points, with a
smaller SSE value indicating a better clustering effect. Let X = {x1, . . ., xN} denote the set
of N samples. Ci (1 ≤ i ≤k) represents a random selection of K initial cluster centers. The
formulas for the Euclidean distance and the SSE are as follows:

dis(X, Ci)
2 =

n

∑
j=1

∥∥xj − cij
∥∥2

https://www.ncei.noaa.gov/
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SSE =
k

∑
i=1

∑
x⊂ci

‖dis(X, Ci)‖2

where n signifies the dimension of the data object, and k is the number of clusters.
The k-means clustering algorithm computes the distance between each sample point

and the cluster center. It starts by randomly selecting k sample objects from the dataset
as the initial cluster centers. Through repeated iterations, it updates the position of each
cluster center until either the updated cluster center remains unchanged or the change is
below a certain threshold. Once the iterative algorithm concludes, the entire dataset is
divided into k distinct clusters.

In this paper, to reduce the effect of outliers and missing values, a sliding average
over a 365-day time span was used for NO2 concentrations prior to the k-means analysis.
Moreover, after several iterations using MATLAB (R2016a) software, we observed that the
clustering results for some cities became unstable when the number of clusters exceeded 3,
so this study classified the 100 cities into three categories for optimal stability.

2.3.2. Geographically and Temporally Weighted Regression Model (GTWR)

In contrast to the traditional ordinary least squares (OLS) model, the GWR model
integrates spatial correlation and linear regression to enhance traditional models by exam-
ining the variable relationship’s spatial variability [37]. By conducting regional regression
analysis on cross-sectional spatial data, GWR can detect spatial heterogeneity. However, it
solely addresses the spatial nonstationarity of the sample data and disregards temporal
nonstationarity. Huang et al. [31] developed the GTWR model by augmenting the GWR
model with temporal coordinates, enabling a more comprehensive representation of spatial
and temporal heterogeneity. The GTWR model can be expressed as follows:

Yi = β0(ui, vi, ti) + ∑
k

βk(ui, vi, tt)Xik + εi

where Yi is the dependent variable at the ith observation point, Xik is the observed value
of the kth independent variable at the ith observation point, (ui, vi, ti) is the coordinate
point (latitude, longitude, time) of the location of observation point i, βk (ui, vi, ti) is the
regression coefficient of the kth independent variable at the ith observation point, and εi is
the error term.

The estimate for βk (ui, vi, ti) can be expressed as follows:

β̂K(ui, vi, ti) =
[

XTW(ui, vi, ti)X
]−1

XTW(ui, vi, ti)Y

where, W (ui, vi, ti) equals diag (wi1, wi2,. . ., wij,. . ., win); wij denotes the space-time distance
decay function of (ui, vi, ti), which corresponds to the weights used in the weighted regres-
sion of the calibration neighborhood observation i. In this work, employing spatiotemporal
distances derived from Gaussian distance decay functions is as follows:

Wij = exp

−
(

dST
ij

)2

h2


where h is a nonnegative quantity referred to as the bandwidth, which results in a decrease
in impact as the distance increases. dST

ij denotes the measure of distance between point i
and point j. which can be expressed as follows:
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(
dST

ij

)2
= λ[

(
ui − uj

)2
+
(
vi − vj

)2
] + µ

(
ti − tj

)2

where λ and µ are scaling factors that quantify the impact of distinct spatial and temporal
distances within uncorrelated measurement systems, with neither λ nor µ being equal
to zero.

The GTWR model requires at least one dependent variable and one or more inde-
pendent variables, and the variance inflation factor (VIF) between these variables needs
to be less than 10. In addition, the GTWR model requires the selection of an appropriate
bandwidth, which determines the spatial extent over which neighboring data points influ-
ence the predictions at a given location. Selecting an optimal bandwidth is crucial to avoid
underfitting or overfitting the data.

3. Results and Discussion
3.1. Classification of Urban NO2 Concentration Level

Figure 2a shows a 365-day sliding average of hourly data from 100 cities. Figure 2b dis-
plays the curves representing the three types of cities: low NO2 concentration cities (LNC),
medium NO2 concentration cities (MNC), and high NO2 concentration cities (HNC), based
on their respective NO2 concentrations. The observed “U” change in NO2 concentrations
from late 2019 to the first half of 2020 can account for the outbreak of COVID-19 at the end
of 2019. This significantly reduced NO2 emissions from public transport and industrial
sources during the first half of 2020. Consequently, the gradual resumption of production
and work increased NO2 concentrations [38].
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Figure 2. Sliding average (a) and k-means cluster analysis results (b). In (a), each line represents a
different city.

The spatial distribution of the three city types is presented in Figure 3, comprising
15 cities in the LNC, 51 cities in the MNC, and 34 cities in the HNC. The LNC cities
primarily consist of popular tourist locations such as Weihai and Huangshan, known for
their robust tourism industries, picturesque landscapes, and good air quality. In contrast,
the HNC encompasses major cities such as Shanghai, Nanjing, and Hefei alongside cities
characterized by a robust industrial presence. The MNC category falls between the LNC
and HNC categories.
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3.2. Spatial and Temporal Trends in NO2 Concentrations

Figure 4 shows the trends in (a) monthly mean NO2 concentrations across various
city types and highlights the seasonal characteristics of (b) LNC, (c) MNC, (d) HNC, and
(e) ALL. To describe seasonal variations, this study categorizes March to May, June to
August, September to November, and December to February as spring, summer, autumn,
and winter, respectively. Figure 4a demonstrates a distinct “V” cycle of NO2 concentrations
in all types of cities. The months of July and August exhibit the lowest NO2 concentrations,
while December is usually the highest of the year. March shows a clear rise in NO2
concentrations annually, known as the “tidal phenomenon” [39]. This phenomenon entails
a substantial decline in NO2 concentrations during the Chinese New Year, followed by a
subsequent rebound after the festival. The NO2 concentration reaches its highest level in
winter, lowest in summer, and slightly higher in autumn compared to spring (Figure 4b).
The average NO2 concentration during the summer was 51.8%, 51.9%, 58.4%, and 54.1%
of the winter concentration in the three city categories and overall, respectively. From
2015 to 2021, the average NO2 concentration in the three city categories decreased by
16.2%, 21.3%, and 26.7%, respectively, while the overall decrease was 22.7% for all cities.
In recent years, the Chinese government has implemented a series of policies to improve
air quality, including the Action Plan for Prevention and Control of Air Pollution (https:
//www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676555.shtml, accessed on 1 February
2023) and the Three-year Action Plan to Fight Air Pollution (https://www.mee.gov.cn/
zcwj/gwywj/201807/t20180704_446068.shtml, accessed on 1 February 2023). These policies
have led to significant improvements in China’s overall air quality. The improvements
can be attributed to several factors, such as the restructuring of industries in different
regions, the increased adoption of cleaner energy sources, and the elimination of outdated
production capacity, among other reasons.

https://www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676555.shtml
https://www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676555.shtml
https://www.mee.gov.cn/zcwj/gwywj/201807/t20180704_446068.shtml
https://www.mee.gov.cn/zcwj/gwywj/201807/t20180704_446068.shtml
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Figure 5 presents the percentage change in NO2 concentrations from 2015 to 2021. Most
cities observed a decrease in NO2 concentrations exceeding 10%, and approximately 30%
of places witnessed a decline of more than 30%. Bozhou City recorded the most substantial
decline in NO2 concentrations at 50.5%. However, a few cities exhibited an increase in NO2
concentrations, with Luan City experiencing an increase of 29.5%. Bozhou, characterized
by a well-established kiln industry, numerous enterprises employing boilers, and residents
engaging in straw burning, has responded to national and local government policies by
conducting an extensive optimization and environmentally conscious transformation of its
kiln sector. The city has also enhanced the comprehensive utilization of straw among its
population, resulting in a notable reduction in local NOx concentrations. Conversely, Luan
grapples with challenges pertaining to the management of pollutant emissions. Primarily
originating from the iron and steel, glass, brick and tile, and building materials industries,
the ongoing expansion of these sectors has gradually heightened NOx emissions. This
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underscores the persistent necessity for refining the industrial structure and transitioning
to cleaner energy sources.
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3.3. Model Results
3.3.1. Model Parameter Results

Since the trends in NO2 concentrations are the same for the three types of cities,
the focus of this study is on their overall analysis using a model. Before model fitting,
examining the covariance relationship among different variables is essential. Typically, a
variance inflation factor (VIF) >10 indicates substantial multicollinearity between variables,
which can significantly impact the model results. The test results are presented in Table 2.
The VIF for the chosen economic components is all less than 10, suggesting the absence
of significant multicollinearity among the variables, aligning with the requirements for
GTWR model construction. When comparing the goodness of fit between the GWR and
GTWR models, it becomes evident that the GTWR model exhibits a significantly higher R2

than the GWR model. With the Akaike information criterion (AICC) serving as the model
goodness-of-fit indicator, the GTWR model demonstrates a lower AICC value than the
GWR model, and the residual sum of squares (RSS) for the GWR model exceeds that of the
GTWR model, indicating superior goodness of fit for the GTWR model.

Table 2. Descriptive statistics of regression results of GWR and GTWR models.

LNC MNC HNC ALL Meteorological

VIF 3.15–9.17 1.19–9.10 1.35–6.68 1.25–5.29 1.56–8.35
Bandwidth GWR 1.987 0.115 0.115 0.115 0.115

GTWR 0.297 0.113 0.137 0.115 0.115
RSS GWR 29.310 103.427 53.258 175.326 98.54

GTWR 12.678 53.389 18.978 102.387 89.667
AICC GWR 138.032 689.429 400.41 1062.62 943.56

GTWR 137.187 614.578 365.268 947.706 824.84
R2 GWR 0.402 0.638 0.707 0.662 0.795

GTWR 0.741 0.813 0.896 0.802 0.831

3.3.2. The Influence of Social Factors on Urban NO2 Concentrations

Table 3 displays the distribution of coefficient estimates in the GTWR model, encom-
passing the minimum, lower quartile, median, upper quartile, and maximum values. Each
indicator showcases a unique regression coefficient concerning the NO2 concentration
in each city. These coefficients exhibit substantial variability, emphasizing variations in
influence degrees and associated trends. The positive and negative regression coefficients
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reveal the dual effects of each indicator on urban NO2, and the varying proportions of
positive and negative impacts. This observation suggests spatial instability among the
driving factors.

Table 3. Results for social factors in the GTWR model.

Type of
City Min. LQ Med. UQ Max.

POP Permanent population density

LNC −2.339 −1.088 −0.573 −0.033 0.002
MNC −1.294 0.011 0.122 0.303 1.078
HNC −1.482 −0.328 −0.119 0.111 1.047
ALL −0.593 0.076 0.431 0.581 2.842

PGDP GDP per capita

LNC 0.050 0.116 1.312 2.474 5.271
MNC −6.644 −0.938 −0.467 0.196 5.333
HNC −2.356 −1.076 −0.298 0.239 1.993
ALL −1.962 −0.645 −0.311 0.054 1.560

UR Urbanization rate

LNC −4.173 −2.292 −1.430 −0.502 −0.421
MNC −2.616 −0.356 0.181 0.592 6.396
HNC −2.054 −0.274 0.065 0.546 1.316
ALL −7.773 0.016 0.342 0.650 1.949

IS Share of secondary sector output
in total GDP

LNC −0.705 −0.232 0.035 0.309 0.578
MNC −1.095 0.013 0.248 0.518 1.774
HNC −0.745 −0.108 0.158 0.399 1.331
ALL −0.151 0.252 0.393 0.516 1.436

EC
Electricity consumption of the

whole society

LNC −0.598 −0.158 0.241 0.688 0.781
MNC −1.934 −0.288 0.806 1.847 7.706
HNC −0.769 −0.197 0.147 0.457 2.118
ALL −1.148 0.168 0.520 0.840 2.508

CG Coverage rate of urban green
areas

LNC −1.660 −0.798 −0.540 −0.198 −0.141
MNC −0.534 −0.062 0.101 0.228 1.366
HNC −0.754 −0.312 −0.073 0.104 0.409
ALL −0.433 −0.082 0.068 0.170 0.739

CV Civil car vehicles

LNC −0.402 −0.249 0.261 0.515 1.820
MNC −6.679 −2.100 −0.826 0.223 1.689
HNC −1.965 −0.240 0.201 0.657 1.970
ALL −1.634 −0.357 −0.036 0.210 1.299

The results of the GTWR indicate that the three types of cities have respective R2

values of 0.741, 0.813, and 0.896, with an overall R2 of 0.802. Furthermore, the coefficients
of the GTWR model exhibit overall significance (p < 0.05). Additionally, the results of the
GTWR model reveal varying impacts of socioeconomic factors on different types of cities.
LNC demonstrates the highest positive correlation with PGDP (1.312) and the strongest
negative correlation with the UR rate (−1.430). The highest correlation between EC (0.806)
and CV (−0.826) is seen in MNC. Economic factors have a very constant impact on HNC,
with PGDP (−0.298) and CV (0.201) having the most effects. These cities had the highest
correlation with POP (0.431) and EC (0.520) overall.

Figure 6 represents the spatial distribution of average coefficients for various drivers
in the GTWR model. The results indicate a positive correlation between population density
and NO2 concentration in most regions, particularly Shandong Province. Conversely, in
some parts of Zhejiang Province, the correlation is negative. Moreover, the correlation
between PGDP and NO2 concentration exhibits significant regional variation. Specifically,
regions in Zhejiang and Henan primarily display a negative correlation, while in Anhui
and Shandong, the correlation is predominantly positive. The recent industrial expansion
in Luan and Hefei has, to some extent, led to a significant depletion of resources and
energy. This depletion could potentially be a contributing factor to the observed increase in
NO2 concentrations within these cities. Zhejiang exhibits the strongest positive correlation
with the UR, while the IS positively correlates with NO2 concentrations across all cities
in the study area, particularly in Qingdao and Yantai in Shandong, suggesting that the
secondary sector is one of the main sources of NO2 emissions. The EC strongly affects
urban NO2 emissions in Henan while negatively affecting Anhui Province. The CG shows
a negative correlation in certain parts of Henan and Zhejiang, whereas it demonstrates a
positive correlation in most cities, particularly in Jiangsu Province. Regarding CV, Anhui
Province exhibits a positive correlation, while Henan and Zhejiang primarily display a
negative correlation. This finding aligns with the study by Carslaw et al. [40], which reports
a decline in traffic-related NO2 concentrations due to upgraded emission standards in
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the automotive industry, predominantly attributed to reduced diesel vehicle emissions
rather than light-duty vehicles. The 2022 Annual Report on Environmental Management of
Mobile Sources in China (www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/, accessed on 1 February
2023) confirms a similar trend.

Figure 7 illustrates the temporal distribution of average coefficients for various drivers
in the GTWR model. Between 2015 and 2021, POP and CG were positively correlated
with NO2 concentrations, diminishing each year, and the negative correlation between
PGDP and NO2 concentrations increased. Although economic development can lead to
environmental degradation, as income levels rise, environmental issues are expected to
improve, leading to reduced pollutant emissions [41], which may be the main reason
for the decrease in NO2 concentration in Henan Province. The UR exhibits a “U” trend,
implying that urbanization has been exacerbating environmental degradation in recent
years [42]. The proportion of the IS and EC indicates an inverted “U” distribution. With the
reinforcement of relevant laws and stringent regulations and the continuous adjustment of
cleaning policies in recent years, China has been transitioning from a pollution-intensive
secondary sector to a tertiary sector characterized by high value-added and advanced
technology. This industrial and technological upgrade will help mitigate the negative
impact on environmental quality [43].
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3.3.3. The Influence of Meteorological Factors on Urban NO2 Concentrations

Table 4 presents the results of global simulation coefficients for meteorological fac-
tors in the GTWR, and the coefficients of the GTWR model exhibit overall significance
(p < 0.05). with an R2 value of 0.831, suggesting a clear relationship between the vari-
ables and the variation in NO2 concentration. The results indicate correlations between
TEM, RHU, WIN, PRE, and NO2 concentrations, with mean coefficients of −0.411, −0.147,
−0.032, and −0.116, respectively. TEM exhibits a significant negative correlation with
NO2 concentration, displaying a correlation coefficient of −0.411. The lower quartile (LQ)
and upper quartile (UQ) values are −0.502 and −0.344, respectively. As the temperature
increases, the photochemical reaction rate of NO2 intensifies [44].

Figure 8 illustrates the annual variations in the mean coefficients of various meteoro-
logical factors from 2015 to 2021. The average coefficients for TEM and RHU have generally
decreased in recent years. The study found that the inhibitory effect of temperature on
NO2 concentration was most significant at lower temperatures and stabilized at higher
temperatures. Additionally, NO2 can be effectively removed from the air only when the
relative humidity is high [45]. The trend of WIN is decreasing and then increasing; the
average coefficient of PRE is increasing year by year, and the increase is most obvious
in 2017.
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Table 4. Results for meteorological factors in the GTWR model.

Min. LQ Med. UQ Max.

TEM −0.951 −0.502 −0.411 −0.344 −0.064
RHU −0.295 −0.251 −0.147 −0.022 0.479
WIN −0.804 −0.417 −0.032 0.235 0.682
PRE −0.588 −0.241 −0.116 −0.007 0.714

4. Conclusions

In this study, based on hourly NO2 observations from 2015–2021, we classify cities in
Mid-Eastern China into three categories by k-means clustering and explore the effects of
drivers on spatial and temporal variations in NO2 concentrations using the GTWR model.
We concluded that the implementation of air pollution control policies in recent years has
led to a reduction in NO2 concentrations in most cities across mid-eastern China, although
certain regions in Anhui and Jiangsu experienced exceptions to this trend. Furthermore, we
observed a significant decrease in NO2 levels during early 2020, attributed to the impact of
COVID-19. Additionally, the seasonal variation in NO2 concentration follows a distinct
pattern, being higher in winter and lower in summer.

We carried out extensive data analysis in this paper and obtained some important
conclusions. First, the strongest correlations of NO2 concentration are found with POP and
EC, which aligns with the consensus among researchers in this field [46,47]. This reaffirms
the validity of our findings and underscores the reliability of our methodologies. Second,
the relationships of NO2 with socio-economic factors exhibit noticeable variations across
different provinces, which contributes valuable insights into the visualization of spatial and
temporal variations in the average coefficients of each of the related NO2 concentrations,
and future government policies should take into account the characteristics of different
regions in formulating new development requirements. In conclusion, the study reveals
the link between NO2 concentrations and their possible influences, taking into account
geographical differences and temporal dynamics. The empirical findings of this research
highlight the unequivocal reality that air pollution challenges vary significantly across
diverse Chinese cities. These disparities emerge due to pronounced spatial and temporal
variations in the interplay between NO2 concentrations and socioeconomic variables.

This study has the potential to inform government decision-making; however, it also
reveals certain limitations that necessitate future research efforts. Primarily, the constraints
associated with the NO2 data obtained from meteorological stations hindered the classifi-
cation of NO2 emission sources, including transport, industry, and heating. Subsequent
investigations should endeavor to incorporate more comprehensive and detailed data to
facilitate more precise source analysis. Moreover, we selected and standardized seven
social factors, which resulted in a smaller distribution of regression coefficients between the
different factors. In addition, the complexity of the mechanisms of air pollution formation
and comprehending urban NO2 drivers through regression analysis remain challenges.
Future research endeavors could employ a combined approach involving correlation analy-
sis and chemical modeling to gain deeper insight into the multifaceted factors influencing
NO2 formation.
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