Extreme Precipitation Events Variation and Projection in the Lancang-Mekong River Basin Based on CMIP6 Simulations
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Assessment Method of Extreme Precipitation in Watershed
2.3.2. Uncertainty and Probability Distribution Methods
3. Result
3.1. Historical Extreme Precipitation Events Variation
3.1.1. Temporal Variation of Extreme Precipitation Events
3.1.2. Spatial Variation of Extreme Precipitation Events
3.1.3. Correlation Analysis of Extreme Precipitation Indexes
3.2. CMIP6 Model Evaluation
3.3. Future Change Projection Based on CMIP6 Simulations
3.3.1. Temporal Variation Characteristics of Extreme Precipitation under Different Scenarios
3.3.2. Spatial Variation Characteristics of Extreme Precipitation under Different Scenarios
3.3.3. Kernel Density Estimation of Extreme Precipitation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.M.; Qian, C.; Zhang, W.J.; He, D.; Qi, Y.J. Extreme temperature indices in Eurasia in a CMIP6 multi-model ensemble: Evaluation and projection. Int. J. Climatol. J. R. Meteorol. Soc. 2021, 41, 5368–5385. [Google Scholar] [CrossRef]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.H. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Min, S.K.; Zhang, X.; Zwiers, F.; Alexander, L.V.; Donat, M.G.; Tung, Y.S. Attribution of extreme temperature changes during 1951–2010. Clim. Dyn. 2016, 46, 1769–1782. [Google Scholar] [CrossRef]
- Zhou, T.J.; Chen, Z.M.; Chen, X.L.; Zuo, M.; Jiang, J.; Hu, S. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information. Clim. Change Res. 2021, 17, 652–663. [Google Scholar] [CrossRef]
- Zhou, B.T.; Qian, J. Changes of weather and climate extremes in the IPCC AR6. Clim. Change Res. 2021, 17, 713–718. [Google Scholar] [CrossRef]
- Jiang, X.F.; Li, L.P.; Zhou, L.B. Progress in the Analysis of Extreme Precipitation Characteristics. Meteorol. Disaster Reduct. Res. 2012, 35, 1–6. [Google Scholar] [CrossRef]
- Wang, Z.F.; Qian, Y.F. Frequency and intensity of extreme precipitation events in China. Adv. Water Sci. 2009, 20, 1–9. [Google Scholar] [CrossRef]
- Kunkel, K.E. North American Trends in Extreme Precipitation. Nat. Hazards 2003, 29, 291–305. [Google Scholar] [CrossRef]
- Ayugi, B.; Dike, V.; Ngoma, H.; Babaousmail, H.; Mumo, R.; Ongoma, V. Future Changes in Precipitation Extremes Over East Africa Based on CMIP6 Projections. Water 2021, 13, 2358. [Google Scholar] [CrossRef]
- Xu, H.W.; Chen, H.P.; Wang, H.J. Future changes in precipitation extremes across China based on CMIP6 models. Int. J. Climatol. J. R. Meteorol. Soc. 2021, 41, 5368–5385. [Google Scholar] [CrossRef]
- Tang, H.X. Resource environment in the Lancang-Mekong River Basin and its sustainable development. Acta Geogr. Sin. 1999, 54, 101–109. [Google Scholar]
- Du, D.B.; Liu, C.L.; Hu, Z.D.; Ma, Y.H. The impact of “Asian Water Tower” change on the geopolitical environment around China. World Reg. Stud. 2020, 29, 223–231. [Google Scholar] [CrossRef]
- Chen, X.R.; Wang, X.Y.; Bai, Y.B. Flood and drought losses in Mekong River basin. J. Econ. Water Resour. 2019, 37, 54–58. [Google Scholar] [CrossRef]
- Chen, X.R.; Wang, X.Y.; Bai, Y.B. Spatial-temporal distribution of flood losses in Mekong River basin countries since 1962. Sci. Disaster 2019, 34, 113–116. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Y.; Pei, Y.S.; Zhai, J.Q. Variation trends of temperature and precipitation in Lancang-Mekong River Basin during 1980–2009. J. China Inst. Water Resour. Hydropower Res. 2011, 9, 304–312. [Google Scholar]
- Li, B.; Li, L.J.; Li, H.B.; Liang, L.Q.; Li, J.Y.; Liu, Y.M.; Zeng, H.W. Changes in Precipitation Extremes in Lancang River Basin,1960–2005. Prog. Geogr. 2011, 30, 290–298. [Google Scholar] [CrossRef]
- Ding, K.X.; Zhang, L.P.; She, D.X.; Zhang, Q.; Xiang, J.W. Variation of extreme precipitation in Lancang River basin under global warming of 1.5 °C and 2.0 °C. Clim. Change Res. 2020, 16, 466–479. [Google Scholar] [CrossRef]
- Quan, N.T.; Khoi, D.N.; Hoan, N.X.; Phung, N.K.; Dang, T.D. Spatiotemporal Trend Analysis of Precipitation Extremes in Ho Chi Minh City, Vietnam During 1980–2017. Int. J. Disaster Risk Sci. 2021, 12, 131–146. [Google Scholar] [CrossRef]
- Shi, W.L.; Yu, X.Z.; Feng, S.; Liao, W.G. Sudden Change and Variation Trend of Extreme Precipitation in Lancang River Basin during 1960–2010. Water Resour. Power 2012, 30, 1–5. [Google Scholar]
- Beck, H.E.; Van, D.A.; Vincenzo, L.; Jaap, S.; Miralles, D.G.; Brecht, M.; Ad, D.E. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Xiong, J.H.; Guo, J.; Guo, S.L.; Li, N.; Wang, J.; Yin, J.B.; Tang, J.L. Estimating probable maximum precipitation based on multisource data of precipitation in the Lancang-Mekong River basin. J. Hydroelectr. Eng. 2022, 41, 77–86. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Lei, H.J.; Ma, J.P.; Li, H.Y.; Wang, J.; Shao, D.H.; Zhao, H.Y. Bias Correction of Climate Model Precipitation in the Upper Heihe River Basin based on Quantile Mapping Method. Plateau Meteorol. 2020, 39, 266–279. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Huang, Q.; Xie, Y.; Leng, G.; Luan, J.; Song, X.; Wei, X.; Li, X. Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: A case study in the Wei River Basin, China. J. Hydrol. 2017, 548, 184–195. [Google Scholar] [CrossRef]
- Feng, Y.L.; He, Z.H.; Jiao, S.L.; Liu, W. Scenario Prediction of Extreme Precipitation in Guizhou Province Based on CMIP6 Climate Model. Res. Soil Water Conserv. 2023, 30, 282–290. [Google Scholar] [CrossRef]
- Limsakul, A.; Singhruck, P. Long-term trends and variability of total and extreme precipitation in Thailand. Atmos. Res. 2016, 169, 301–317. [Google Scholar] [CrossRef]
- Xiao, W.W.; An, B.; Jia, D. Temporal Variation Characteristics of Extreme Weather Events in Ankang from 1955 to 2017. Res. Soil Water Conserv. 2017, 28, 212–221. [Google Scholar] [CrossRef]
- Ya, R.; Li, N.; Yin, S.; Bao, Y.H. Characteristics of Temporal and Spatial Variation of Extreme Climate Events in Inner Mongolia During the Period 1960–2015. Res. Soil Water Conserv. 2020, 27, 106–112. [Google Scholar] [CrossRef]
- Teegavarapu, R.; Nayak, A. Evaluation of long-term trends in extreme precipitation: Implications of in-filled historical data use for analysis. J. Hydrol. 2017, 550, 616–634. [Google Scholar] [CrossRef]
- Tan, X.; Gan, T.Y.; Shao, D. Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada. J. Hydrol. 2017, 550, 453–465. [Google Scholar] [CrossRef]
- Dike, V.N.; Zhao, H.L.; Kece, F.; Gaby, S.L.; Debashis, N. Evaluation and multimodel projection of seasonal precipitation extremes over central Asia based on CMIP6 simulations. Int. J. Climatol. J. R. Meteorol. Soc. 2022, 42, 7228–7251. [Google Scholar] [CrossRef]
- Xu, C.H.; Xu, Y. The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble. Atmos. Ocean. Sci. Lett. 2012, 5, 527–533. [Google Scholar] [CrossRef]
- Ren, D.; Leslie, M.L.; Lynch, J.M. Trends in Storm-Triggered Landslides over Southern California. Appl. Meteor. Clim. 2014, 53, 217–233. [Google Scholar] [CrossRef]
- Liu, F.X.; Wang, Y.J.; Zhao, J.; Chen, X.; Jiang, T. Characteristics of extreme precipitation changes in the middle and lower reaches of the Yangtze River under global warming scenarios of 1.5 °C and 2.0 °C. Resour. Environ. Yangtze Basin 2017, 26, 778–788. [Google Scholar] [CrossRef]
- Chen, X.R.; Wang, X.Y.; Bai, Y.B. Characteristics of natural disasters in five countries of the Mekong River Basin from 1900 to 2017. J. China Inst. Water Resour. Hydropower Res. 2019, 17, 7. [Google Scholar]
- Tu, S. Lancang-mekong water resources security and cooperation: A development-oriented analysis perspective. Int. Secur. Stud. 2021, 39, 29. [Google Scholar] [CrossRef]
Organization | Country | Mode Name | Mesh Resolution |
---|---|---|---|
BCC | China | BCC-CSM2-MR | 1.1° × 1.1° |
EC-Earth-Cons | Britain | EC-Earth3 | 0.7° × 0.7° |
EC-Earth-Cons | Britain | EC-Earth3-Veg | 0.7° × 0.7° |
INM | Russia | INM-CM5-0 | 2.0° × 1.5° |
ID | Indicator Name | Definitions | Units |
---|---|---|---|
PRCPTOT | Annual total wet day precipitation | Annual total PRCP in wet days (RR ≥ 1 mm) | mm |
R10 | Number of heavy precipitation days | Annual count of days when PRCP ≥ 10 mm | days |
R20 | Number of very heavy precipitation days | Annual count of days when PRCP ≥ 20 mm | days |
P95p | Very wet days | Annual total PRCP when RR > 95th percentile | mm |
RX5day | MAX 5-day precipitation amount | Maximum consecutive 5-day precipitation | mm |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as PRCP ≥ 1.0 mm) in the year | mm/day |
Region | PRCPTOT | R10 | R20 | R95p | RX5day | SDII |
---|---|---|---|---|---|---|
I | 648.38 | 14.00 | 2.00 | 249.68 | 60.22 | 4.81 |
II | 1209.15 | 39.00 | 11.00 | 448.22 | 106.20 | 7.44 |
III | 1505.93 | 50.77 | 16.64 | 545.51 | 130.19 | 8.67 |
IV | 1696.49 | 56.00 | 20.13 | 615.43 | 152.66 | 9.24 |
Year | District | Region | PRCPTOT | R10 | R20 | R95p | RX5day | SDII |
---|---|---|---|---|---|---|---|---|
1992 | Yunnan | I | 677.90 | 16.80 | 5.22 | 344.90 | 80.88 | 5.82 |
1998 | Yunnan | I | 742.63 | 20.06 | 3.51 | 292.10 | 72.33 | 5.56 |
2011 | Yunnan | II | 1413.57 | 49.42 | 16.00 | 498.54 | 109.77 | 8.09 |
2011 | Thailand | IV | 1928.48 | 64.79 | 24.89 | 681.60 | 166.92 | 10.33 |
2013 | Thailand | IV | 1843.73 | 59.60 | 22.48 | 700.73 | 186.00 | 10.10 |
2019 | Yunnan | I | 914.54 | 19.00 | 7.14 | 404.80 | 109.50 | 5.59 |
Evaluation Index | Annual Average | Standard Deviation | Relative Error/% | Spatial Correlation Coefficient | |||
---|---|---|---|---|---|---|---|
MSWEP | MME | MSWEP | MME | ||||
region I | PRCPTOT/mm | 635.989 | 620.492 | 59.157 | 36.277 | −2.437 | 0.997 |
R10/d | 13.597 | 13.440 | 2.288 | 1.342 | −1.155 | 1.000 | |
R20/d | 1.851 | 1.749 | 0.827 | 0.323 | −5.511 | 0.998 | |
R95p/mm | 245.898 | 241.934 | 23.663 | 10.917 | −1.612 | 0.999 | |
Rx5day/mm | 58.693 | 61.126 | 7.024 | 3.563 | 4.145 | 0.981 | |
SDII/(mm/d) | 4.813 | 4.818 | 0.331 | 0.158 | 0.104 | 0.996 | |
region II | PRCPTOT/mm | 1203.847 | 1193.630 | 114.533 | 92.687 | −0.849 | 1.000 |
R10/d | 39.016 | 38.785 | 4.664 | 4.052 | −0.592 | 1.000 | |
R20/d | 10.857 | 8.466 | 2.091 | 1.311 | −22.023 | 0.999 | |
R95p/mm | 446.406 | 438.584 | 36.871 | 24.241 | −1.752 | 0.999 | |
Rx5day/mm | 106.622 | 115.534 | 18.361 | 8.943 | 8.359 | 0.982 | |
SDII/(mm/d) | 7.434 | 7.461 | 0.483 | 0.344 | 0.363 | 1.000 | |
region III | PRCPTOT/mm | 1513.839 | 1474.808 | 129.991 | 92.136 | −2.578 | 0.997 |
R10/d | 51.178 | 50.230 | 5.796 | 3.721 | −1.852 | 0.997 | |
R20/d | 16.531 | 16.289 | 2.42 | 1.841 | −1.464 | 0.998 | |
R95p/mm | 574.997 | 537.052 | 42.844 | 27.900 | −6.599 | 0.996 | |
Rx5day/mm | 131.003 | 146.267 | 17.659 | 11.282 | 11.652 | 0.978 | |
SDII/(mm/d) | 8.723 | 8.845 | 0.499 | 0.358 | 1.399 | 0.994 | |
region IV | PRCPTOT/mm | 1703.094 | 1648.695 | 144.539 | 117.210 | −3.194 | 0.998 |
R10/d | 56.495 | 55.320 | 5.273 | 4.523 | −2.080 | 0.999 | |
R20/d | 20.272 | 19.669 | 2.464 | 2.449 | −2.975 | 0.999 | |
R95p/mm | 615.371 | 590.117 | 50.826 | 40.637 | −4.104 | 0.991 | |
Rx5day/mm | 151.82 | 167.075 | 15.084 | 18.003 | 10.048 | 0.964 | |
SDII/(mm/d) | 9.472 | 9.444 | 0.487 | 0.544 | −0.296 | 0.995 |
Scenarios | PRCPTOT | R10 | R20 | R95p | RX5day | SDII | |
---|---|---|---|---|---|---|---|
I | SSP1-2.6 | 9.90% | 19.30% | 36.92% | 12.11% | 27.45% | 9.26% |
SSP2-4.5 | 6.83% | 16.53% | 28.13% | 9.74% | 20.25% | 8.45% | |
SSP3-7.0 | 10.44% | 24.08% | 41.14% | 13.64% | 27.05% | 11.43% | |
SSP5-8.5 | 11.44% | 25.07% | 38.10% | 15.00% | 29.91% | 12.52% | |
II | SSP1-2.6 | 2.35% | 1.64% | 8.23% | 4.15% | 20.07% | 2.68% |
SSP2-4.5 | 0.99% | −0.68% | 6.89% | 4.31% | 19.44% | 2.69% | |
SSP3-7.0 | 0.17% | −1.55% | 6.92% | 4.78% | 20.67% | 3.24% | |
SSP5-8.5 | 1.02% | −0.75% | 7.94% | 4.95% | 18.63% | 2.67% | |
III | SSP1-2.6 | 3.82% | 2.72% | 8.60% | 6.49% | 25.60% | 5.55% |
SSP2-4.5 | 2.73% | 0.38% | 8.24% | 7.21% | 25.75% | 5.52% | |
SSP3-7.0 | 1.47% | −1.84% | 6.77% | 7.89% | 25.91% | 5.83% | |
SSP5-8.5 | 5.41% | 3.81% | 11.21% | 8.90% | 27.86% | 6.57% | |
IV | SSP1-2.6 | 4.90% | 5.13% | 6.89% | 3.93% | 19.38% | 4.40% |
SSP2-4.5 | 3.80% | 3.23% | 6.11% | 4.29% | 19.52% | 4.28% | |
SSP3-7.0 | 3.32% | 2.36% | 4.00% | 5.03% | 23.16% | 4.48% | |
SSP5-8.5 | 8.58% | 6.78% | 10.81% | 10.18% | 31.59% | 7.16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, Y.; Chen, X.; Zhang, J.; Guan, T.; Wang, G.; Jin, J.; Zhang, Y.; Tang, L. Extreme Precipitation Events Variation and Projection in the Lancang-Mekong River Basin Based on CMIP6 Simulations. Atmosphere 2023, 14, 1350. https://doi.org/10.3390/atmos14091350
Liu J, Liu Y, Chen X, Zhang J, Guan T, Wang G, Jin J, Zhang Y, Tang L. Extreme Precipitation Events Variation and Projection in the Lancang-Mekong River Basin Based on CMIP6 Simulations. Atmosphere. 2023; 14(9):1350. https://doi.org/10.3390/atmos14091350
Chicago/Turabian StyleLiu, Jing, Yanli Liu, Xin Chen, Jianyun Zhang, Tiesheng Guan, Guoqing Wang, Junliang Jin, Ye Zhang, and Liushan Tang. 2023. "Extreme Precipitation Events Variation and Projection in the Lancang-Mekong River Basin Based on CMIP6 Simulations" Atmosphere 14, no. 9: 1350. https://doi.org/10.3390/atmos14091350
APA StyleLiu, J., Liu, Y., Chen, X., Zhang, J., Guan, T., Wang, G., Jin, J., Zhang, Y., & Tang, L. (2023). Extreme Precipitation Events Variation and Projection in the Lancang-Mekong River Basin Based on CMIP6 Simulations. Atmosphere, 14(9), 1350. https://doi.org/10.3390/atmos14091350