Characteristics of Biometeorological Conditions in Poland during the Long May Weekend Based on the Universal Thermal Climate Index
Abstract
:1. Introduction
2. Research Area, Materials and Data Analysis
2.1. Research Area
2.2. Materials
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wereski, S.; Krzyżewska, A.; Dobek, M. Winter UTCI variability in Poland in the 21st century. Misc. Geogr. 2020, 24, 128–137. [Google Scholar] [CrossRef]
- Miszuk, B. Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region. Atmosphere 2021, 12, 163. [Google Scholar] [CrossRef]
- Owczarek, M. The influence of air temperature diversity in Central Europe on the occurrence of very strong and extreme cold stress in Poland in winter months. Geogr. Pol. 2021, 94, 251–266. [Google Scholar] [CrossRef]
- Owczarek, M.; Tomczyk, A.M. Impact of Atmospheric Circulation on the Occurrence of Very Strong and Extreme Cold Stress in Poland. Quaest. Geogr. 2022, 41, 111–126. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E.; Szyga-Pluta, K.; Owczarek, M. Effect of regional baric systems on the occurrence of bioclimatic conditions in Poland. Quaest. Geogr. 2023, 42, 161–177. [Google Scholar]
- Owczarek, M. The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theor. Appl. Climatol. 2019, 137, 855–869. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Owczarek, M. Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theor. Appl. Climatol. 2020, 139, 893–905. [Google Scholar] [CrossRef]
- Krzyżewska, A.; Wereski, S.; Dobek, M. Summer UTCI variability in Poland in twenty-first century. Int. J. Biometeorol. 2021, 65, 1497–1513. [Google Scholar] [CrossRef]
- Tomczyk, A.M. Bioclimatic Conditions of June 2019 in Poland on a Multi-Year Background (1966–2019). Atmosphere 2021, 12, 1117. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E.; Matzarakis, A. Human-biometeorological conditions during heatwaves in Poland. Int. J. Climatol. 2020, 40, 5043–5055. [Google Scholar] [CrossRef]
- Krzyżewska, A.; Wereski, S.; Demczuk, P. Biometeorological conditions during an extreme heatwave event in Poland in August 2015. Weather 2019, 75, 183–189. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P.E. Visualization of climate factors for sports events and activities—The Tokyo 2020 Olympic Games. Atmosphere 2019, 10, 572. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D. Sport events and climate for visitors—The case of FIFA world cup in Qatar 2022. Int. J. Biometeorol. 2015, 59, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, E.; Iida, A.; Vanos, J.; Middel, A.; Yokohari, M.; Brown, R. Microclimate variation and estimated heat stress of runners in the 2020 Tokyo Olympic marathon. Atmosphere 2018, 9, 192. [Google Scholar] [CrossRef]
- Wu, Y.; Graw, K.; Matzarakis, A. Comparison of thermal comfort between Sapporo and Tokyo—The case of the Olympics 2020. Atmosphere 2020, 11, 444. [Google Scholar] [CrossRef]
- Matzarakis, A.; Graw, K. Human Bioclimate Analysis for the Paris Olympic Games. Atmosphere 2022, 13, 269. [Google Scholar] [CrossRef]
- Koźmiński, C.; Michalska, B. The seasonal nature of tourist flows in relation to meteorological conditions as illustrated by the case of Zachodniopomorskie Voivodeship. Bull. Geography. Socio-Econ. Ser. 2016, 34, 33–45. [Google Scholar] [CrossRef]
- Koźmiński, C.; Michalska, B. Ocena długości sezonu kąpielowego na polskim wybrzeżu Bałtyku (Assessment of the length of bathing season on the Polish Baltic Sea coast). Eur. Reg. 2014, 24, 11–22. (In Polish) [Google Scholar]
- Borzyszkowski, J. Zjawisko sezonowości w turystyce—Istota problemu i działań krajowych podmiotów polityki turystycznej na rzecz jej ograniczania (Seasonality in tourism—The essence of the problem and the activities of national entities tourism policy to its limit). Rozpr. Nauk. Akad. Wych. Fiz. We Wrocławiu 2014, 45, 167. [Google Scholar]
- Janowski, I. Natężenie i struktura ruchu turystycznego na szlakach Świętokrzyskiego Parku Narodowego (Intensifying and structure of touristic movement on routes in the Świętokrzyski National Park). In Między Ochroną Przyrody a Gospodarką–Bliżej ochrony: Konflikty Człowiek—Przyroda na Obszarach Prawnie Chronionych w Polsce, Sosnowiec-Ojców; Hibszer, A., Partyka, J., Eds.; Polskie Towarzystwo Geograficzne Oddział Katowicki & Ojcowski Park Narodowy: Sosnowiec, Poland, 2005; pp. 96–107. [Google Scholar]
- Janowski, I. Funkcja turystyczna Muzeum Przyrodniczo-Leśnego na Świętym Krzyżu w Górach Świętokrzyskich. In Regionalne Oraz Lokalne Czynniki Rozwoju Turystyki; Wszechnica Świętokrzyska, Instytut Geografii AŚ, Oddział Kielecki PTG: Kielce, Poland, 2003; pp. 253–267. [Google Scholar]
- Auguścik, A. Natężenie i struktura ruchu turystycznego w Leśnym Arboretum Warmii i Mazur im. Polskiego Towarzystwa Leśnego w Kudypach (Intensity and structure of tourist traffic in the Forest Arboretum of Warmia and Mazury in Kudypy). Leśne Pr. Badaw. 2020, 81, 1–8. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.M. Temperatura powietrza. In Atlas klimatu Polski (1991–2020); Tomczyk, A.M., Bednorz, E., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2022. [Google Scholar]
- Matuszko, D.; Bartoszek, K. Zachmurzenie. In Atlas klimatu Polski (1991–2020); Tomczyk, A.M., Bednorz, E., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2022. [Google Scholar]
- Bednorz, E. Opady atmosferyczne. In Atlas klimatu Polski (1991–2020); Tomczyk, A.M., Bednorz, E., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2022. [Google Scholar]
- Bednorz, E. Pokrywa śnieżna. In Atlas klimatu Polski (1991–2020); Tomczyk, A.M., Bednorz, E., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2022. [Google Scholar]
- Błażejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmer, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef]
- Fiala, D.; Lomas, K.J.; Stohrer, M. A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. J. Appl. Physiol. 1999, 87, 1957–1972. [Google Scholar] [CrossRef] [PubMed]
- Fiala, D.; Lomas, K.J.; Stohrer, M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int. J. Biometeorol. 2001, 45, 143–159. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Błażejczyk, M. BioKlima, Version 2.6.; Polish Academy of Sciences: Warsaw, Poland, 2006. [Google Scholar]
- Błażejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, An Introduction. International Geophysics Series 59; Academic Press: Cambridge, MA, USA, 1995; p. 464. [Google Scholar]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Tan, G.; Skindlov, J.A. An evaluation of three Clustering procedures for use in synoptic climatological classification. J. Appl. Meteorol. Climatol. 1987, 26, 717–730. [Google Scholar] [CrossRef]
- Birkeland, K.W.; Mock, C.J. Atmospheric circulation patterns associated with heavy snowfall events, Bridger Bowl, Montana, U.S.A. Mt. Res. Dev. 1996, 16, 281–286. [Google Scholar] [CrossRef]
- Bednorz, E. Synoptic conditions of snow cover occurrence in central European lowlands. Int. J. Climatol. 2011, 31, 1108–1118. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Kuchcik, M.; Błażejczyk, K.; Halaś, A. Changes in Bioclimatic Indices. In Climate Change in Poland; Falarz, M., Ed.; Springer Climate: Katowice, Poland, 2021; pp. 471–491. [Google Scholar]
- Tomczyk, A.M.; Bednorz, E. Regional and seasonal variability in human thermal stress in Poland. Theor. Appl. Climatol. 2023, 152, 787–800. [Google Scholar] [CrossRef]
- Kejna, M.; Rudzki, M. Spatial diversity of air temperature changes in Poland in 1961–2018. Theor. Appl. Climatol. 2021, 143, 1361–1379. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Wypych, A.; Czekierda, D. Air Temperature Change. In Climate Change in Poland—Past, Present, Future; Falarz, M., Ed.; Springer Climate: Katowice, Poland, 2021; pp. 275–330. [Google Scholar]
- Wibig, J. Change of Wind. In Climate Change in Poland—Past, Present, Future; Falarz, M., Ed.; Springer Climate: Katowice, Poland, 2021; pp. 391–420. [Google Scholar]
- Wypych, A. Wilgotność powietrza. In Atlas klimatu Polski (1991–2020); Tomczyk, A.M., Bednorz, E., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2022. [Google Scholar]
- Rozbicka, K.; Rozbicki, T. Long-term variability of bioclimatic conditions and tourism potential for Warsaw agglomeration (Poland). Int. J. Biometeorol. 2021, 65, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Kolendowicz, L.; Półrolniczak, M.; Szyga-Pluta, K.; Bednorz, E. Human-biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI). Theor. Appl. Climatol. 2018, 134, 363–379. [Google Scholar] [CrossRef]
UTCI (°C) | Stress Category | UTCI (°C) | Stress Category |
---|---|---|---|
>+46 | Extreme heat stress | 0 to +9 | Slight cold stress |
+38 to +46 | Very strong heat stress | −13 to 0 | Moderate cold stress |
+32 to +38 | Strong heat stress | −27 to −13 | Strong cold stress |
+26 to +32 | Moderate heat stress | −40 to −27 | Very strong cold stress |
+9 to +26 | No thermal stress | <−40 | Extreme cold stress |
Station | Lowest Average UTCI | Highest Average UTCI | Changes (°C/10 Years) | Station | Lowest Average UTCI | Highest Average UTCI | Changes (°C/10 Years) |
---|---|---|---|---|---|---|---|
Białystok | 1985 | 2012 | 0.85 | Opole | 1971 | 2012 | 0.64 |
Bielsko-Biała | 1971 | 2012 | 0.99 | Poznań | 1985 | 2005 | 0.81 |
Chojnice | 1981 | 2012 | 0.59 | Racibórz | 2011 | 2012 | 0.07 |
Gorzów Wielkopolski | 1985 | 2012 | 1.28 | Rzeszów | 1985 | 2012 | 1.05 |
Hel | 1979 | 1993 | 0.88 | Siedlce | 1981 | 2012 | 0.78 |
Jelenia Góra | 1979 | 1966 | 0.59 | Słubice | 1979 | 2001 | 0.64 |
Kalisz | 1981 | 2012 | 0.63 | Sulejów | 1971 | 2012 | 0.97 |
Katowice | 1985 | 2012 | 1.07 | Suwałki | 1981 | 1977 | 1.37 |
Kielce | 1971 | 2012 | 0.78 | Szczecin | 1979 | 1966 | 0.95 |
Kłodzko | 1985 | 2012 | 0.74 | Świnoujście | 1985 | 1966 | 0.89 |
Kołobrzeg | 2019 | 1998 | 0.70 | Terespol | 1970 | 1977 | 1.26 |
Koszalin | 1979 | 2000 | 0.72 | Toruń | 1970 | 2012 | 0.91 |
Kraków | 1985 | 2002 | 0.97 | Ustka | 2017 | 1988 | −0.53 |
Lesko | 1985 | 2012 | 1.88 | Warszawa | 1970 | 1977 | 0.59 |
Lublin | 1985 | 2012 | 1.25 | Włodawa | 1985 | 2012 | 1.17 |
Łeba | 1981 | 1966 | 0.22 | Wrocław | 1981 | 2012 | 0.54 |
Łódź | 1981 | 2012 | 0.88 | Zakopane | 1985 | 2012 | 0.59 |
Mława | 1970 | 2012 | 1.07 | Zielona Góra | 1985 | 2012 | 0.73 |
Olsztyn | 1970 | 1977 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, A.M.; Mendel, K. Characteristics of Biometeorological Conditions in Poland during the Long May Weekend Based on the Universal Thermal Climate Index. Atmosphere 2023, 14, 1334. https://doi.org/10.3390/atmos14091334
Tomczyk AM, Mendel K. Characteristics of Biometeorological Conditions in Poland during the Long May Weekend Based on the Universal Thermal Climate Index. Atmosphere. 2023; 14(9):1334. https://doi.org/10.3390/atmos14091334
Chicago/Turabian StyleTomczyk, Arkadiusz Marek, and Karolina Mendel. 2023. "Characteristics of Biometeorological Conditions in Poland during the Long May Weekend Based on the Universal Thermal Climate Index" Atmosphere 14, no. 9: 1334. https://doi.org/10.3390/atmos14091334
APA StyleTomczyk, A. M., & Mendel, K. (2023). Characteristics of Biometeorological Conditions in Poland during the Long May Weekend Based on the Universal Thermal Climate Index. Atmosphere, 14(9), 1334. https://doi.org/10.3390/atmos14091334