Inter-Comparison of Radon Measurements from a Commercial Beta-Attenuation Monitor and ANSTO Dual Flow Loop Monitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Locations
2.2. Study Period
2.3. Instrumentation
2.3.1. ANSTO Radon Detector
2.3.2. BAM 5014i
- = detection efficiency of α particles
- = gross count rate [s−1]
- = background α count rate with an unloaded filter [s−1]
- = air flow rate [m3 s−1]
- = 4550 s; an equilibrium constant for 222Rn daughter nuclides
2.3.3. Meteorological Measurements
2.4. Data Handling and Analysis
3. Results
3.1. Mean Concentrations and Distributions
3.2. Diurnal, Weekday and Monthly Comparisons
3.3. Temperature, Humidity and Wind Dependence
3.4. Variations under Different Atmospheric Stability Classes
4. Discussion
5. Recommendations
- (1)
- radon measurements from the Thermo 5014i BAM are robust and precise above the MDL
- (2)
- correlations between BAM and ANSTO measurements are strong and there is no systematic bias due to environmental variables such as temperature, humidity, wind or atmospheric stability at this site
- (3)
- BAM radon measurements can be used “as is” for atmospheric tracer type studies, but measurements require (simple) linear adjustment, accounting for skewness, when used in studies where actual radon flux, dosage or absolute values are required
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pearson, J.E.; Jones, G.E. Soil concentrations of “emanating radium-226” and the emanation of radon-222 from soils and plants. Tellus 1966, 18, 655–662. [Google Scholar] [CrossRef]
- Fricke, R.G.; Schlegel, K. Julius Elster and Hans Geitel–Dioscuri of physics and pioneer investigators in atmospheric electricity. Hist. Geo-Space Sci. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- George, A.C. World history of radon research and measurement from the early 1900′s to today. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2008; Volume 1034, pp. 20–33. [Google Scholar] [CrossRef]
- Dörr, H.; Kromer, B.; Levin, I.; Münnich, K.; Volpp, H.J. CO2 and radon 222 as tracers for atmospheric transport. J. Geophys. Res. Ocean. 1983, 88, 1309–1313. [Google Scholar] [CrossRef]
- Polian, G.; Lambert, G.; Ardouin, B.; Jegou, A. Long-range transport of continental radon in subantarctic and antarctic areas. Tellus B Chem. Phys. Meteorol. 1986, 38, 178–189. [Google Scholar] [CrossRef]
- Chambers, S.D.; Williams, A.G.; Conen, F.; Griffiths, A.D.; Reimann, S.; Steinbacher, M.; Krummel, P.B.; Steele, L.P.; van der Schoot, M.V.; Galbally, I.E.; et al. Towards a universal “baseline” characterisation of air masses for high- and low-altitude observing stations using Radon-222. Aerosol Air Qual. Res. 2015, 16, 885–899. [Google Scholar] [CrossRef]
- Jacob, D.J.; Prather, M.J.; Rasch, P.J.; Shia, R.L.; Balkanski, Y.J.; Beagley, S.R.; Bergmann, D.J.; Blackshear, W.; Brown, M.; Chiba, M. Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res. Atmos. 1997, 102, 5953–5970. [Google Scholar] [CrossRef]
- Zhang, K.; Wan, H.; Zhang, M.; Wang, B. Evaluation of the atmospheric transport in a GCM using radon measurements: Sensitivity to cumulus convection parameterization. Atmos. Chem. Phys. 2008, 8, 2811–2832. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Crawford, J.H.; Chen, G.; Fairlie, T.D.; Chambers, S.; Kang, C.-H.; Williams, A.G.; Zhang, K.; Considine, D.B. Simulation of radon-222 with the GEOS-Chem global model: Emissions, seasonality, and convective transport. Atmos. Chem. Phys. 2021, 21, 1861–1887. [Google Scholar] [CrossRef]
- Chambers, S.D.; Guérette, E.-A.; Monk, K.; Griffiths, A.D.; Zhang, Y.; Duc, H.; Cope, M.; Emmerson, K.M.; Chang, L.T.; Silver, J.D. Skill-testing chemical transport models across contrasting atmospheric mixing states using Radon-222. Atmosphere 2019, 10, 25. [Google Scholar] [CrossRef]
- Williams, A.G.; Zahorowski, W.; Chambers, S.; Griffiths, A.; Hacker, J.M.; Element, A.; Werczynski, S. The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers. J. Atmos. Sci. 2011, 68, 155–174. [Google Scholar] [CrossRef]
- Williams, A.G.; Chambers, S.; Griffiths, A. Bulk Mixing and Decoupling of the Nocturnal Stable Boundary Layer Characterized Using a Ubiquitous Natural Tracer. Bound. -Layer Meteorol. 2013, 149, 381–402. [Google Scholar] [CrossRef]
- Chambers, S.; Williams, A.; Zahorowski, W.; Griffiths, A.; Crawford, J. Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere. Tellus B Chem. Phys. Meteorol. 2011, 63, 843–859. [Google Scholar] [CrossRef]
- Vecchi, R.; Piziali, F.; Valli, G.; Favaron, M.; Bernardoni, V. Radon-based estimates of equivalent mixing layer heights: A long-term assessment. Atmos. Environ. 2019, 197, 150–158. [Google Scholar] [CrossRef]
- Crawford, J.; Chambers, S.D.; Williams, A.G. Assessing the impact of synoptic weather systems on air quality in Sydney using Radon 222. Atmos. Environ. 2023, 295, 119537. [Google Scholar] [CrossRef]
- Williams, A.G.; Chambers, S.D.; Conen, F.; Reimann, S.; Hill, M.; Griffiths, A.D.; Crawford, J. Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city. Tellus B Chem. Phys. Meteorol. 2016, 68, 30967. [Google Scholar] [CrossRef]
- Chambers, S.; Podstawczyńska, A.; Pawlak, W.; Fortuniak, K.; Williams, A.; Griffiths, A. Characterizing the state of the urban surface layer using radon-222. J. Geophys. Res. Atmos. 2019, 124, 770–788. [Google Scholar] [CrossRef]
- Kikaj, D.; Chambers, S.D.; Crawford, J.; Kobal, M.; Gregorič, A.; Vaupotič, J. Investigating the vertical and spatial extent of radon-based classification of the atmospheric mixing state and impacts on seasonal urban air quality. Sci. Total Environ. 2023, 872, 162126. [Google Scholar] [CrossRef] [PubMed]
- Levin, I.; Glatzel-Mattheier, H.; Marik, T.; Cuntz, M.; Schmidt, M.; Worthy, D.E. Verification of German methane emission inventories and their recent changes based on atmospheric observations. J. Geophys. Res. Atmos. 1999, 104, 3447–3456. [Google Scholar] [CrossRef]
- Vogel, F.; Ishizawa, M.; Chan, E.; Chan, D.; Hammer, S.; Levin, I.; Worthy, D. Regional non-CO2 greenhouse gas fluxes inferred from atmospheric measurements in Ontario, Canada. J. Integr. Environ. Sci. 2012, 9 (Suppl. S1), 41–55. [Google Scholar] [CrossRef]
- Grossi, C.; Vogel, F.R.; Curcoll, R.; Àgueda, A.; Vargas, A.; Rodó, X.; Morguí, J.-A. Study of the daily and seasonal atmospheric CH 4 mixing ratio variability in a rural Spanish region using 222 Rn tracer. Atmos. Chem. Phys. 2018, 18, 5847–5860. [Google Scholar] [CrossRef]
- Al-Zoughool, M.; Krewski, D. Health effects of radon: A review of the literature. Int. J. Radiat. Biol. 2009, 85, 57–69. [Google Scholar] [CrossRef]
- Riudavets, M.; Garcia de Herreros, M.; Besse, B.; Mezquita, L. Radon and lung cancer: Current trends and future perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef]
- Blomberg, A.J.; Coull, B.A.; Jhun, I.; Vieira, C.L.; Zanobetti, A.; Garshick, E.; Schwartz, J.; Koutrakis, P. Effect modification of ambient particle mortality by radon: A time series analysis in 108 US cities. J. Air Waste Manag. Assoc. 2019, 69, 266–276. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015—A Contribution to the Implementation of the WMO Strategic Plan: 2008–2011; GAW Report No. 172; WMO: Geneva, Switzerland, 2007; 108p. [Google Scholar]
- Heiskanen, J.; Brümmer, C.; Buchmann, N.; Calfapietra, C.; Chen, H.; Gielen, B.; Gkritzalis, T.; Hammer, S.; Hartman, S.; Herbst, M. The integrated carbon observation system in Europe. Bull. Am. Meteorol. Soc. 2022, 103, E855–E872. [Google Scholar] [CrossRef]
- Fraass, R. RadNet National Air Monitoring Program. In Nuclear Terrorism and National Preparedness; Apikyan, S., Diamond, D., Eds.; NATO Science for Peace and Security Series B: Physics and, Biophysics; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Čeliković, I.; Pantelić, G.; Vukanac, I.; Krneta Nikolić, J.; Živanović, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Quindos Poncela, L.S.; Rabago, D. Outdoor radon as a tool to estimate radon priority areas—A literature overview. Int. J. Environ. Res. Public Health 2022, 19, 662. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Chambers, S. A history of radon measurements at Cape Grim. In Baseline Atmospheric Program (Australia) History and Recollections, 40th Anniversary Special ed.; BoM; CSIRO: Melbourne, Australia, 2016; pp. 131–146. [Google Scholar]
- Levin, I.; Born, M.; Cuntz, M.; Langendörfer, U.; Mantsch, S.; Naegler, T.; Schmidt, M.; Varlagin, A.; Verclas, S.; Wagenbach, D. Observations of atmospheric variability and soil exhalation rate of radon-222 at a Russian forest site. Technical approach and deployment for boundary layer studies. Tellus B Chem. Phys. Meteorol. 2002, 54, 462–475. [Google Scholar] [CrossRef]
- Wada, A.; Murayama, S.; Kondo, H.; Matsueda, H.; Sawa, Y.; Tsuboi, K. Development of a compact and sensitive electrostatic radon-222 measuring system for use in atmospheric observation. J. Meteorol. Soc. Japan. Ser. II 2010, 88, 123–134. [Google Scholar] [CrossRef]
- Grossi, C.; Vargas, A.; Camacho, A.; López-Coto, I.; Bolívar, J.; Xia, Y.; Conen, F. Inter-comparison of different direct and indirect methods to determine radon flux from soil. Radiat. Meas. 2011, 46, 112–118. [Google Scholar] [CrossRef]
- Whittlestone, S.; Zahorowski, W. Baseline radon detectors for shipboard use: Development and deployment in the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. Atmos. 1998, 103, 16743–16751. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Chambers, S.D.; Williams, A.G.; Werczynski, S. Increasing the accuracy and temporal resolution of two-filter radon–222 measurements by correcting for the instrument response. Atmos. Meas. Tech. 2016, 9, 2689–2707. [Google Scholar] [CrossRef]
- Chambers, S.D.; Preunkert, S.; Weller, R.; Hong, S.-B.; Humphries, R.S.; Tositti, L.; Angot, H.; Legrand, M.; Williams, A.G.; Griffiths, A.D. Characterizing atmospheric transport pathways to Antarctica and the remote Southern Ocean using radon-222. Front. Earth Sci. 2018, 6, 190. [Google Scholar] [CrossRef]
- Xia, Y.; Sartorius, H.; Schlosser, C.; Stöhlker, U.; Conen, F.; Zahorowski, W. Comparison of one-and two-filter detectors for atmospheric 222 Rn measurements under various meteorological conditions. Atmos. Meas. Tech. 2010, 3, 723–731. [Google Scholar] [CrossRef]
- Schmithüsen, D.; Chambers, S.; Fischer, B.; Gilge, S.; Hatakka, J.; Kazan, V.; Neubert, R.; Paatero, J.; Ramonet, M.; Schlosser, C. A European-wide 222 radon and 222 radon progeny comparison study. Atmos. Meas. Tech. 2017, 10, 1299–1312. [Google Scholar] [CrossRef]
- Grossi, C.; Chambers, S.D.; Llido, O.; Vogel, F.R.; Kazan, V.; Capuana, A.; Werczynski, S.; Curcoll, R.; Delmotte, M.; Vargas, A. Intercomparison study of atmospheric 222 Rn and 222 Rn progeny monitors. Atmos. Meas. Tech. 2020, 13, 2241–2255. [Google Scholar] [CrossRef]
- Macias, E.S.; Husar, R.B. Atmospheric particulate mass measurement with beta attenuation mass monitor. Environ. Sci. Technol. 1976, 10, 904–907. [Google Scholar] [CrossRef]
- Perrino, C.; Pietrodangelo, A.; Febo, A. An atmospheric stability index based on radon progeny measurements for the evaluation of primary urban pollution. Atmos. Environ. 2001, 35, 5235–5244. [Google Scholar] [CrossRef]
- Chambers, S.D.; Wang, F.; Williams, A.G.; Xiaodong, D.; Zhang, H.; Lonati, G.; Crawford, J.; Griffiths, A.D.; Ianniello, A.; Allegrini, I. Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmos. Environ. 2015, 107, 233–243. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Chambers, S.D.; Tian, X.; Zhu, R.; Mei, M.; Huang, Z.; Allegrini, I. Quantifying influences of nocturnal mixing on air quality using an atmospheric radon measurement case study in the city of jinhua, China. Aerosol Air Qual. Res. 2020, 20, 620–629. [Google Scholar] [CrossRef]
- Sahukar, R.; Gallery, C.; Smart, J.; Mitchell, P. The Bioregions of New South Wales: Their Biodiversity, Conservation and History; National Parks and Wildlife Service NSW: Dubbo, Australia, 2003.
- Riley, M.; Kirkwood, J.; Jiang, N.; Ross, G.; Scorgie, Y. Air quality monitoring in NSW: From long term trend monitoring to integrated urban services. Air Qual. Clim. Change 2020, 54, 44–51. [Google Scholar]
- Nguyen, H.D.; Azzi, M.; White, S.; Salter, D.; Trieu, T.; Morgan, G.; Rahman, M.; Watt, S.; Riley, M.; Chang, L.T.-C. The summer 2019–2020 wildfires in east coast Australia and their impacts on air quality and health in New South Wales, Australia. Int. J. Environ. Res. Public Health 2021, 18, 3538. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Greater Sydney in February 2020: Wet with Warm Nights. Available online: http://www.bom.gov.au/climate/current/month/nsw/archive/202002.sydney.shtml (accessed on 28 June 2023).
- Röttger, A.; Röttger, S.; Grossi, C.; Vargas, A.; Curcoll, R.; Otáhal, P.; Hernández-Ceballos, M.Á.; Cinelli, G.; Chambers, S.; Barbosa, S.A. New metrology for radon at the environmental level. Meas. Sci. Technol. 2021, 32, 124008. [Google Scholar] [CrossRef]
- Chambers, S.; Williams, A.; Crawford, J.; Griffiths, A. On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos. Chem. Phys. 2015, 15, 1175–1190. [Google Scholar] [CrossRef]
- Chambers, S.D.; Griffiths, A.D.; Williams, A.G.; Sisoutham, O.; Morosh, V.; Röttger, S.; Mertes, F.; Röttger, A. Portable two-filter dual-flow-loop 222 Rn detector: Stand-alone monitor and calibration transfer device. Adv. Geosci. 2022, 57, 63–80. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK; New York, NY, USA, 2002; pp. 20–27. [Google Scholar]
- Kataoka, T. Diurnal variation in radon concentration and mixing-layer depths. Bound. -Layer Meteorol. 1998, 89, 225–250. [Google Scholar] [CrossRef]
- Kataoka, T.; Yunoki, E.; Shimizu, M.; Mori, T.; Tsukamoto, O.; Ohashi, Y.; Sahashi, K.; Maitani, T.; Miyashita, K.I.; Iwata, T. A study of the atmospheric boundary layer using radon and air pollutants as tracers. Bound. -Layer Meteorol. 2001, 101, 131–156. [Google Scholar] [CrossRef]
- Dörr, H.; Münnich, K. Annual variation in soil respiration in selected areas of the temperate zone. Tellus B 1987, 39, 114–121. [Google Scholar] [CrossRef]
Period | Mean (0.95 Confidence Interval) | σ | Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5th | 25th | Median | 75th | 95th | ||||||||||
ANSTO | BAM | ANSTO | BAM | ANSTO | BAM | ANSTO | BAM | ANSTO | BAM | ANSTO | BAM | ANSTO | BAM | |
January | 2.75 (2.57–2.98) | 1.95 (1.78–2.11) | 2.68 | 2.01 | 0.50 | 0.17 | 1.05 | 0.71 | 1.90 | 1.29 | 3.35 | 2.46 | 8.09 | 6.56 |
February | 1.56 (1.48–1.65) | 0.92 (0.83–1.00) | 1.45 | 1.11 | 0.28 | 0.00 | 0.54 | 0.16 | 1.00 | 0.52 | 2.16 | 1.28 | 4.61 | 3.55 |
March | 2.79 (2.60–2.94) | 1.65 (1.54–1.81) | 2.54 | 1.95 | 0.37 | 0.05 | 0.90 | 0.35 | 1.92 | 0.87 | 3.74 | 2.36 | 8.26 | 6.01 |
April | 5.26 (5.00–5.50) | 3.79 (3.52–4.06) | 4.10 | 3.47 | 0.79 | 0.09 | 1.95 | 0.90 | 4.01 | 2.63 | 7.57 | 5.81 | 13.69 | 10.89 |
May | 9.59 (9.09–10.14) | 6.30 (5.89–6.60) | 7.23 | 5.71 | 2.02 | 0.31 | 3.79 | 1.55 | 7.29 | 4.32 | 14.01 | 10.17 | 24.06 | 17.70 |
June | 7.50 (7.04–8.00) | 4.57 (4.27–4.93) | 6.04 | 4.64 | 1.05 | 0.00 | 2.82 | 1.08 | 5.59 | 2.84 | 10.61 | 6.80 | 20.07 | 14.87 |
July | 7.41 (7.06–7.82) | 4.60 (4.29–4.96) | 5.80 | 4.57 | 1.38 | 0.15 | 2.92 | 1.25 | 5.57 | 3.05 | 9.99 | 6.11 | 20.20 | 14.98 |
August | 6.72 (6.26–7.20) | 4.05 (3.75–4.40) | 6.32 | 4.63 | 0.95 | 0.05 | 2.11 | 0.71 | 4.21 | 2.05 | 9.05 | 5.45 | 20.26 | 14.94 |
September | 5.09 (4.79–5.43) | 3.01 (2.79–3.32) | 4.92 | 3.51 | 0.71 | 0.00 | 1.79 | 0.56 | 3.15 | 1.56 | 6.56 | 4.29 | 16.84 | 11.47 |
October | 4.29 (4.09–4.59) | 2.69 (2.48–2.93) | 3.89 | 2.99 | 0.82 | 0.00 | 1.68 | 0.66 | 2.68 | 1.63 | 5.44 | 3.46 | 13.19 | 9.95 |
November | 3.29 (3.06–3.50) | 2.03 (1.86–2.20) | 3.23 | 2.49 | 0.68 | 0.00 | 1.42 | 0.61 | 2.16 | 1.25 | 3.65 | 2.33 | 10.96 | 7.72 |
December | 2.52 (2.34–2.70) | 1.62 (1.46–1.76) | 2.55 | 1.87 | 0.54 | 0.00 | 0.96 | 0.41 | 1.72 | 0.98 | 2.94 | 2.09 | 8.14 | 5.93 |
Annual | 2.75 (2.57–2.98) | 1.95 (1.78–2.11) | 5.17 | 3.89 | 0.54 | 0.00 | 1.52 | 0.60 | 2.93 | 1.58 | 6.47 | 4.16 | 16.29 | 12.04 |
Variable | Deciles | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Temperature | 0.87 (0.85–0.89) | 0.89 (0.88–0.90) | 0.90 (0.89–0.91) | 0.91 (0.90–0.92) | 0.87 (0.85–0.89) | 0.87 (0.85–0.89) | 0.85 (0.83–0.87) | 0.83 (0.81–0.85) | 0.81 (0.79–0.83) | 0.76 (0.73–0.79) |
Relative humidity | 0.68 (0.64–0.72) | 0.78 (0.75–0.81) | 0.83 (0.81–0.85) | 0.87 (0.85–0.89) | 0.89 (0.88–0.90) | 0.88 (0.86–0.90) | 0.89 (0.88–0.90) | 0.88 (0.86–0.90) | 0.94 (0.93–0.95) | 0.96 (0.95–0.97) |
Wind speed | 0.90 (0.89–0.91) | 0.90 (0.89–0.91) | 0.89 (0.88–0.90) | 0.92 (0.91–0.93) | 0.89 (0.88–0.90) | 0.87 (0.85–0.89) | 0.84 (0.82–0.86) | 0.71 (0.68–0.74) | 0.64 (0.60–0.68) | 0.47 (0.42–0.52) |
Sigma theta | 0.92 (0.91–0.93) | 0.89 (0.88–0.90) | 0.91 (0.90–0.92) | 0.92 (0.91–0.93) | 0.93 (0.92–0.94) | 0.91 (0.90–0.92) | 0.91 (0.90–0.92) | 0.90 (0.89–0.91) | 0.90 (0.89–0.91) | 0.89 (0.88–0.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riley, M.L.; Chambers, S.D.; Williams, A.G. Inter-Comparison of Radon Measurements from a Commercial Beta-Attenuation Monitor and ANSTO Dual Flow Loop Monitor. Atmosphere 2023, 14, 1333. https://doi.org/10.3390/atmos14091333
Riley ML, Chambers SD, Williams AG. Inter-Comparison of Radon Measurements from a Commercial Beta-Attenuation Monitor and ANSTO Dual Flow Loop Monitor. Atmosphere. 2023; 14(9):1333. https://doi.org/10.3390/atmos14091333
Chicago/Turabian StyleRiley, Matthew L., Scott D. Chambers, and Alastair G. Williams. 2023. "Inter-Comparison of Radon Measurements from a Commercial Beta-Attenuation Monitor and ANSTO Dual Flow Loop Monitor" Atmosphere 14, no. 9: 1333. https://doi.org/10.3390/atmos14091333
APA StyleRiley, M. L., Chambers, S. D., & Williams, A. G. (2023). Inter-Comparison of Radon Measurements from a Commercial Beta-Attenuation Monitor and ANSTO Dual Flow Loop Monitor. Atmosphere, 14(9), 1333. https://doi.org/10.3390/atmos14091333