Climate Change Will Lead to a Significant Reduction in the Global Cultivation of Panicum milliaceum
Abstract
:1. Introduction
2. Material and Methods
2.1. Species Data Source
2.2. Sources of Environmental Variables
2.3. Model Construction and Evaluation
2.4. Classification of Potentially Suitable Areas
3. Results and Discussion
3.1. Model Accuracy Evaluation
3.2. Current Potential Geographical Distributions of Panicum milliaceum
3.3. Future Potential Geographical Distributions of Panicum milliaceum
3.4. Combination of Dominant Environmental Variables Affecting the Distribution of Panicum milliaceum
4. Discussion
4.1. Changes in the Potential Geographic Distribution of Panicum milliaceum under Future Climate Change Scenarios
4.2. Influence of Environmental Variables on the Potential Geographical Distribution of Panicum milliaceum
4.3. Importance of Carrying Out Modeling of the Potential Geographical Distribution of Panicum milliaceum
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, F.H.; Dong, G.H.; Zhang, D.J.; Liu, X.Y.; Jia, X.; An, C.B.; Ma, M.M.; Xie, Y.W.; Barton, L.; Ren, X.Y.; et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 2015, 347, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, R.; Zhang, Y.; Mou, Q.; Gou, Y.; Liu, K.; Huang, N.; Ouyang, C.; Hu, J.; Du, B. Simulation of potential suitable distribution of Alnus cremastogyne Burk. In China under climate change scenarios. Ecol. Indic. 2021, 133, 108396. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, P.; Shang, Y. The potential global distribution and dynamics of wheat under multiple climate change scenarios. Sci. Total Environ. 2019, 688, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Bai, C.; Zhang, M.; Lu, Y.; Gao, P.; Yang, J.; Xue, Y.; Li, G. Future landscape of renewable fuel resources: Current and future conservation and utilization of main biofuel crops in China. Sci. Total Environ. 2021, 806, 150946. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Huang, Y.; Zhang, J.; Mou, Q.; Qiu, J.; Wang, R.; Li, Y.; Zhang, D. Simulation of potential suitable distribution of original species of Fritillariae Cirrhosae Bulbus in China under climate change scenarios. Environ. Sci. Pollut. Res. 2021, 29, 22237–22250. [Google Scholar] [CrossRef]
- Liu, L.; Guan, L.; Zhao, H.; Huang, Y.; Mou, Q.; Liu, K.; Chen, T.; Wang, X.; Zhang, Y.; Wei, B.; et al. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol. Inform. 2021, 63, 101324. [Google Scholar] [CrossRef]
- Brooks, T.M.; Mittermeier, R.A.; Da Fonseca, G.A.B.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S.L. Global Biodiversity Conservation Priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Jiang, X.; Chen, H.; Liu, M.; Wang, R. Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Glob. Ecol. Conserv. 2022, 38, e02186. [Google Scholar] [CrossRef]
- Dong, G.H.; Li, R.; Lu, M.X.; Zhang, D.; James, N. Evolution of human-environmental interactions in China from the Late Paleolithic to the Bronze Age. Prog. Phys. Geogr. 2020, 44, 233–250. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Singh, P. A review paper on climate change, agriculture and food security. Asian J. Res. Soc. Sci. Humanit. 2021, 11, 883–887. [Google Scholar] [CrossRef]
- Naylor, R.L. The Bryson synthesis: The forging of climate change narratives during the World Food Crisis. Sci. Context 2023, 34, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.H.; Graham, C.P.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Larson, G.; Piperno, D.R.; Allaby, R.G.; Purugganan, M.D.; Andersson, L.; Arroyo-Kalin, M.; Barton, L.; Vigueira, C.C.; Denham, T.; Dobney, K.; et al. Current perspectives and the future of domestication studies. Proc. Natl. Acad. Sci. USA 2014, 111, 6139–6146. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Z.; Perry, L.; Lu, H.; Wang, Q.; Zhao, C.; Li, J.; Xie, F.; Yu, J.; Cui, T.; et al. Early millet use in northern China. Proc. Natl. Acad. Sci. USA 2012, 109, 3726–3730. [Google Scholar] [CrossRef] [PubMed]
- Piłat, B.; Ogrodowska, D.; Zadernowski, R. Nutrient content of puffed proso millet (Panicum miliaceum L.) and amaranth (Amaranthus cruentus L.) grains. Czech J. Food Sci. 2016, 34, 362–369. [Google Scholar] [CrossRef]
- Li, W.; Xu, Z.; Shi, M.; Chen, J. Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb. in Asia under different climate scenarios. Acta Ecol. Sin. 2019, 39, 3224–3234. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Y.; Gao, X.; Jiang, X.; Huang, M.; Ye, H.; Wu, J.; Zhang, J.; Sun, X.; Wu, Q. Succession patterns of aroma components during brewing process of broomcorn millet (Panicum miliaceum L.) Huangjiu. Food Res. Int. 2022, 154, 110982. [Google Scholar] [CrossRef]
- Zhang, D.-Z.; Panhwar, R.B.; Liu, J.-J.; Gong, X.-W.; Liang, J.-B.; Liu, M.; Lu, P.; Gao, X.-L.; Feng, B.-L. Morphological diversity and correlation analysis of phenotypes and quality traits of proso millet (Panicum miliaceum L.) core collections. J. Integr. Agric. 2019, 18, 958–969. [Google Scholar] [CrossRef]
- Mani, V.; Upadhyaya, H.D. Diversity and trait-specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L.) germplasm collection. Crop J. 2018, 6, 451–463. [Google Scholar]
- Liu, C.; Yuan, Y.; Liu, J.; Wang, H.; Ma, Q.; Zhou, Y.; Liu, C.; Gong, X.; Feng, B. Comparative transcriptome and physiological analysis unravel proso millet (Panicum miliaceum L.) source leaf adaptation to nitrogen deficiency with high nitrogen use efficiency. Environ. Exp. Bot. 2022, 199, 104891. [Google Scholar] [CrossRef]
- Santana, P.A.J.; Kumar, L.; Da Silva, R.S.; Pereira, J.L.; Picanço, M.C. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest Manag. Sci. 2019, 75, 2706–2715. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tao, X.; Liao, J.; Liu, S.; Xu, L.; Yuan, S.; Zhang, Z.; Wang, F.; Deng, N.; Huang, J.; et al. Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model. Field Crop. Res. 2021, 275, 108372. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, Y.; Jiang, P.; Chen, H.; Yang, J. Prediction of Potential Geographic Distribution of Endangered Relict Tree Species Dipteronia sinensis in China Based on MaxEnt and GIS. Pol. J. Environ. Stud. 2022, 31, 3597–3609. [Google Scholar] [CrossRef]
- Liao, J.; Yang, C.; Shao, Q.; Sun, Q.; Han, Y. Construction of an ecological model of Sambucus javanica blume in China under different climate scenarios based on maxent model. Plant Ecol. 2023, 224, 221–237. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, C.; Guo, X.; Chen, D.; You, C.; Zhang, Y.; Wang, M.; Li, Q. Potential distribution of Spodoptera frugiperda (J.E. Smith) in China and the major factors influencing distribution. Glob. Ecol. Conserv. 2019, 21, e00865. [Google Scholar] [CrossRef]
- Peng, G.; He, S.; Zhao, Q.; Li, G.; Zhang, X.; Guo, M.; Wang, S.; Niu, J.; Wang, Z. Prediction of potentially suitable distribution areas of Thesium chinense Turcz. in China against the background of climate change. Plant Ecol. 2023, 258, 13–23. [Google Scholar]
- Xian, X.; Zhao, H.; Wang, R.; Huang, H.; Chen, B.; Zhang, G.; Liu, W.; Wan, F. Climate change has increased the global threats posed by three ragweeds (Ambrosia L.) in the Anthropocene. Sci. Total Environ. 2023, 859, 160252. [Google Scholar] [CrossRef]
- Zhao, H.; Xian, X.; Yang, N.; Zhang, Y.; Liu, H.; Wan, F.; Guo, J.; Liu, W. Insights from the biogeographic approach for biocontrol of invasive alien pests: Estimating the ecological niche overlap of three egg parasitoids against Spodoptera frugiperda in China. Sci. Total Environ. 2023, 862, 160785. [Google Scholar] [CrossRef]
- Wang, R.; Yang, H.; Luo, W.; Wang, M.; Lu, X.; Huang, T.; Zhao, J.; Li, Q. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ 2019, 7, e7323. [Google Scholar] [CrossRef]
- Yang, J.-T.; Jiang, X.; Chen, H.; Jiang, P.; Liu, M.; Huang, Y. Predicting the Potential Distribution of the Endangered Plant Magnolia wilsonii Using MaxEnt under Climate Change in China. Pol. J. Environ. Stud. 2022, 31, 4435–4445. [Google Scholar] [CrossRef]
- Li, J.; Fan, G.; He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 2019, 698, 134141. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Lan, R.; Chen, J.; Pan, J.; Chen, R.; Lin, H.; Li, Z.; Xue, Q.; Liu, C.; Huang, Y. Simulation of Potential Suitable Distribution of Endangered Medicinal of Paeonia rockii under Climate Change Scenarios. Pol. J. Environ. Stud. 2023, 32, 2181–2197. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Prysiazhniuk, L.M.; Nochvina, O.V.; Shytikova, Y.V.; Mizerna, N.A.; Hryniv, S.M. Ecological plasticity and stability of common millet (Panicum miliaceum L.) productivity in different environmental conditions of Ukraine. Plant Var. Stud. Prot. 2021, 17, 146–154. [Google Scholar] [CrossRef]
- Wei, B.; Sun, F.F.; Ma, X.; Huang, T.T.; Ma, S.M. Songmei Possible response of the suitable distribution areas of endangered desert Plant Gymnocarpos przewalskii to future climate change scenario. J. Shihezi Univ. (Nat. Sci.) 2019, 37, 490–497. [Google Scholar]
- Leng, W.; He, H.S.; Bu, R.; Dai, L.; Hu, Y.; Wang, X. Predicting the distributions of suitable habitat for three larch species under climate warming in Northeastern China. For. Ecol. Manag. 2008, 254, 420–428. [Google Scholar] [CrossRef]
- Yu, F.; Wang, T.; Groen, T.A.; Skidmore, A.K.; Yang, X.; Ma, K.; Wu, Z. Climate and land use changes will degrade the distribution of Rhododendrons in China. Sci. Total Environ. 2019, 659, 515–528. [Google Scholar] [CrossRef]
- Rasool, A.; Hafiz, S.W.; Padder, S.A. Exogenous selenium treatment alleviates salinity stress in Proso Millet (Panicum miliaceum L.) by enhancing the antioxidant defence system and regulation of ionic channels. Plant Growth Regul. 2022, 100, 3. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, C.; Dang, K.; Gong, X.; Feng, B. Cultivar sensitivity of broomcorn millet (Panicum miliaceum L.) to nitrogen availability is associated with differences in photosynthetic physiology and nitrogen uptake. Plant Physiol. Biochem. 2022, 182, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, Q.R.; Zhao, Y.T.; Sun, L.P. Suitability analysis of farmland for corn millet growing in Fugu County. Agric. Res. Arid. Areas 2015, 33, 187–193. [Google Scholar]
- Huo, X.J. Leaf Senescence and Reactive Oxygen Metabolism of Different Water-Saving Cultivation Mode in Millet. Northwest University of Agriculture and Forestry Technology. 2014. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201501&filename=1014429959.nh (accessed on 20 March 2023).
- Pu, J.Y.; Yao, X.Y.; Xin, C.Y.; Yuan, Y.P. A Study on eco-climate suitability of broomcorn millet (Panicum Miliaceum L.) in Gansu. Agric. Res. Arid. Areas 2010, 28, 223–226. [Google Scholar]
- Zhang, Q.Y. Effect of Elevated CO2 on Growth and Yield of Broomcorn Millet under Different Water Conditions. Shanxi Agricultural University. 2017. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201901&filename=1018050440.nh (accessed on 20 March 2022).
- Dong, Y. Construction of a comprehensive evaluation system for cold tolerance germplasm resources of panicum miliaceum during the sprouting stage. JiangSu Agric. Sci. 2022, 50, 82–89. [Google Scholar] [CrossRef]
- Huan, X.; Wei, X.; Zhang, J.; Li, J.; Zhang, X.; Shao, K.; Ge, Y.; Yang, X.; Lu, H. Discovery of the Earliest Rice Paddy in the Mixed Rice–Millet Farming Area of China. Land 2022, 11, 831. [Google Scholar] [CrossRef]
Variables | Description | Significance of the Indicators |
---|---|---|
hswd | Overall data on soil worldwide | Reflects the overall effect of soil factors |
bio2 | Monthly average of the diurnal temperature difference | Reflecting the characteristics of temperature differences |
bio8 | Average temperature of the wettest quarter | Reflects whether water and heat are synchronized |
bio13 | Wettest monthly precipitation | Reflects extreme moisture conditions |
bio14 | Driest monthly precipitation | Reflects extreme moisture conditions |
bio15 | Coefficient of variation in precipitation | Reflects rainfall and seasonal distribution |
bio18 | Warmest quarter precipitation | Reflects whether water and heat are synchronized |
bio19 | Coldest quarterly precipitation | Reflects whether water and heat are synchronized |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Jiang, J.; Yang, C.; Gu, X.; Huang, Y.; Liu, L. Climate Change Will Lead to a Significant Reduction in the Global Cultivation of Panicum milliaceum. Atmosphere 2023, 14, 1297. https://doi.org/10.3390/atmos14081297
Jiang P, Jiang J, Yang C, Gu X, Huang Y, Liu L. Climate Change Will Lead to a Significant Reduction in the Global Cultivation of Panicum milliaceum. Atmosphere. 2023; 14(8):1297. https://doi.org/10.3390/atmos14081297
Chicago/Turabian StyleJiang, Pan, Junyi Jiang, Cong Yang, Xinchen Gu, Yi Huang, and Liang Liu. 2023. "Climate Change Will Lead to a Significant Reduction in the Global Cultivation of Panicum milliaceum" Atmosphere 14, no. 8: 1297. https://doi.org/10.3390/atmos14081297
APA StyleJiang, P., Jiang, J., Yang, C., Gu, X., Huang, Y., & Liu, L. (2023). Climate Change Will Lead to a Significant Reduction in the Global Cultivation of Panicum milliaceum. Atmosphere, 14(8), 1297. https://doi.org/10.3390/atmos14081297