Rural Farmers’ Perceptions for the Impacts of Climate Change and Adaptation Policies on Wheat Productivity: Insights from a Recent Study in Balochistan, Pakistan
Abstract
:1. Introduction
2. Literature Review and Conceptual Framework
2.1. Literature Review
2.2. Conceptual Framework
3. Material and Methods
3.1. Description of Research Site and Data Collection
3.2. Data Analysis Models of the Study
3.2.1. Binary Logit (BL) Model
3.2.2. Multivariate Probit (MVP) Model
4. Empirical Results
4.1. Descriptive Statistics of the Model Variables Description Statistics of the Variables
4.2. The CC Influence on Crop Production
4.3. The CC Adaptation of Rural Farmers in Agriculture Productivity
4.4. The CC-Related Factors Influencing Farmers’ Decisions on Crop Production
5. Discussion
6. Conclusions, Policy Recommendations, Limitations, and Future Directions
6.1. Conclusions and Policy Recommendations
6.2. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernemental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA; New York, NY, USA, 2022; Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf (accessed on 1 July 2023).
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Gorst, A.; Dehlavi, A.; Groom, B. Crop productivity and adaptation to climate change in Pakistan. Environ. Dev. Econ. 2018, 23, 679–701. [Google Scholar] [CrossRef] [Green Version]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abid, M.; Scheffran, J.; Schneider, U.A.; Ashfaq, M. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015, 6, 225–243. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Abid, M.; Ashfaq, M.; Hassan, S.; Fatima, N. A resource use efficiency analysis of small Bt cotton farmers in Punjab, Pakistan. Pak. J. Agric. Sci. 2011, 48, 65–71. [Google Scholar]
- Khan, N.; Ma, J.; Zhang, H.; Zhang, S. Climate Change Impact on Sustainable Agricultural Growth: Insights from Rural Areas. Atmosphere 2023, 14, 1194. [Google Scholar] [CrossRef]
- Ali, S.; Liu, Y.; Ishaq, M.; Shah, T.; Abdullah; Ilyas, A.; Din, I.U. Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods 2017, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Ma, J.; Kassem, H.S.; Kazim, R.; Ray, R.L.; Ihtisham, M.; Zhang, S. Rural Farmers’ Cognition and Climate Change Adaptation Impact on Cash Crop Productivity: Evidence from a Recent Study. Int. J. Environ. Res. Public Health 2022, 19, 12556. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Hussain, S.; Zhang, S.; Khayyam, M.; Ihtisham, M.; Asongu, S.A. Potential role of technology innovation in transformation of sustainable food systems: A review. Agriculture 2021, 11, 984. [Google Scholar] [CrossRef]
- Prikhodko, D.; Zrilyi, O. Pakistan: Review of the Wheat Sector and Grain Storage Issues Country Highlights; Food and Agriculture Organisation: Rome, Italy, 2013; pp. 1–81. [Google Scholar]
- Ahmad, S.; Israr, M.; Yaseen, A.; Ahmad, N. Climate change trend analysis on selected food crops at central Khyber Pakhtunkhwa of Pakistan. Int. J. Dev. Sustain. 2017, 6, 2082–2093. [Google Scholar]
- Baig, M.B.; Shahid, S.A.; Straquadine, G.S. Making rainfed agriculture sustainable through environmental friendly technologies in Pakistan: A review. Int. Soil Water Conserv. Res. 2013, 1, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abumhadi, N.; Todorovska, E.; Assenov, B.; Tsonev, S.; Vulcheva, D.; Vulchev, D.; Atanasova, L.; Savova, S.; Atanassov, A.; Keith, W. Agricultural research in 21st century: Challenges facing the food security under the impacts of climate change. Bulg. J. Agric. Sci. 2012, 18, 801–818. [Google Scholar]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.; Jarvis, A.; Kristjanson, P. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Fan, L.; ZHANG, H.-j.; Khan, N. Commercial cash crop production and households’ economic welfare: Evidence from the pulse farmers in rural China. J. Integr. Agric. 2022, 21, 3395–3407. [Google Scholar]
- Niles, M.T.; Lubell, M.; Brown, M. How limiting factors drive agricultural adaptation to climate change. Agric. Ecosyst. Environ. 2015, 200, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Niles, M.T.; Brown, M.; Dynes, R. Farmer’s intended and actual adoption of climate change mitigation and adaptation strategies. Clim. Chang. 2016, 135, 277–295. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Khan, F.U.; Ihtisham, M.; Zhang, S. Does the Adoption of Mobile Internet Technology Promote Wheat Productivity? Evidence from Rural Farmers. Sustainability 2022, 14, 7614. [Google Scholar] [CrossRef]
- Arshad, M.; Kächele, H.; Krupnik, T.J.; Amjath-Babu, T.; Aravindakshan, S.; Abbas, A.; Mehmood, Y.; Müller, K. Climate variability, farmland value, and farmers’ perceptions of climate change: Implications for adaptation in rural Pakistan. Int. J. Sustain. Dev. World Ecol. 2017, 24, 532–544. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. Climate Change 2007-Mitigation of Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef]
- Bob, U.; Bronkhorst, S.; Sala, S. Climate change and conflict: Conflict-sensitive climate change adaptation in Africa. In Conflict-Sensitive Adaptation to Climate Change in Africa; Bob, U., Bronkhorst, S., Eds.; BWV: Berlin, Germany, 2014; pp. 27–55. [Google Scholar]
- Esham, M.; Garforth, C. Agricultural adaptation to climate change: Insights from a farming community in Sri Lanka. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 535–549. [Google Scholar] [CrossRef]
- Van Aalst, M.K.; Cannon, T.; Burton, I. Community level adaptation to climate change: The potential role of participatory community risk assessment. Glob. Environ. Chang. 2008, 18, 165–179. [Google Scholar] [CrossRef]
- Juana, J.S.; Kahaka, Z.; Okurut, F.N. Farmers’ perceptions and adaptations to climate change in sub-Sahara Africa: A synthesis of empirical studies and implications for public policy in African agriculture. J. Agric. Sci. 2013, 5, 121. [Google Scholar] [CrossRef] [Green Version]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Huffman, W.E. Human capital and adoption of innovations: Policy implications. Appl. Econ. Perspect. Policy 2020, 42, 92–99. [Google Scholar] [CrossRef]
- Diendéré, A.; Nguyen, G.; Del Corso, J.-P.; Kephaliacos, C. Modeling the relationship between pesticide use and farmers’ beliefs about water pollution in Burkina Faso. Ecol. Econ. 2018, 151, 114–121. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Regmi, P.P.; Chanana, N.; Aggarwal, P.K. Potential of climate-smart agriculture in reducing women farmers’ drudgery in high climatic risk areas. Clim. Chang. 2020, 158, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Boansi, D.; Tambo, J.A.; Müller, M. Analysis of farmers’ adaptation to weather extremes in West African Sudan Savanna. Weather Clim. Extrem. 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Ihtisham, M.; Siddiqui, B.N.; Zhang, S. Can cooperative supports and adoption of improved technologies help increase agricultural income? Evidence from a recent study. Land 2022, 11, 361. [Google Scholar] [CrossRef]
- Diendere, A.A. Determinants Of The Awareness And Use Of Electronic Information Systems: Evidence From Farmers In Burkina Faso. Rev. Agric. Appl. Econ. (RAAE) 2019, 22, 3–13. [Google Scholar] [CrossRef]
- Perz, S.G. Social determinants and land use correlates of agricultural technology adoption in a forest frontier: A case study in the Brazilian Amazon. Hum. Ecol. 2003, 31, 133–165. [Google Scholar] [CrossRef]
- Serebrennikov, D.; Thorne, F.; Kallas, Z.; McCarthy, S.N. Factors influencing adoption of sustainable farming practices in Europe: A systemic review of empirical literature. Sustainability 2020, 12, 9719. [Google Scholar] [CrossRef]
- Ghanian, M.; Ghoochani, O.M.; Dehghanpour, M.; Taqipour, M.; Taheri, F.; Cotton, M. Understanding farmers’ climate adaptation intention in Iran: A protection-motivation extended model. Land Use Policy 2020, 94, 104553. [Google Scholar] [CrossRef]
- Barnes, M.L.; Wang, P.; Cinner, J.E.; Graham, N.A.; Guerrero, A.M.; Jasny, L.; Lau, J.; Sutcliffe, S.R.; Zamborain-Mason, J. Social determinants of adaptive and transformative responses to climate change. Nat. Clim. Chang. 2020, 10, 823–828. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Uddin, M.N.; Bokelmann, W.; Entsminger, J.S. Factors affecting farmers’ adaptation strategies to environmental degradation and climate change effects: A farm level study in Bangladesh. Climate 2014, 2, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Yegbemey, R.N.; Yabi, J.A.; Tovignan, S.D.; Gantoli, G.; Kokoye, S.E.H. Farmers’ decisions to adapt to climate change under various property rights: A case study of maize farming in northern Benin (West Africa). Land Use Policy 2013, 34, 168–175. [Google Scholar] [CrossRef]
- Zakari, S.; Ibro, G.; Moussa, B.; Abdoulaye, T. Adaptation strategies to climate change and impacts on household income and food security: Evidence from Sahelian region of Niger. Sustainability 2022, 14, 2847. [Google Scholar] [CrossRef]
- NDIAYE, S.; Dieng, A.; Diagne, A. Impact of Adoption Adaptation Climate Change on Household Food Security and Incomes in Ferlo Semi-arid Area, Northern Senegal. Int. J. Curr. Adv. Res. 2018, 7, 13757–13763. [Google Scholar]
- Amare, A.; Simane, B. Does adaptation to climate change and variability provide household food security? Evidence from Muger sub-basin of the upper Blue-Nile, Ethiopia. Ecol. Process. 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Berhe, M.; Hoag, D.; Tesfay, G.; Tadesse, T.; Oniki, S.; Kagatsume, M.; Keske, C.M. The effects of adaptation to climate change on income of households in rural Ethiopia. Pastoralism 2017, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Combary, O.; Traore, S. Impacts of health services on agricultural labor productivity of rural households in Burkina Faso. Agric. Resour. Econ. Rev. 2021, 50, 150–169. [Google Scholar] [CrossRef]
- Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Mulumeoderhwa, M.; Mugisho, M.; Rushigira, C.; Biganiro, M.; Vwima, N.; Mushagalusa, N. Strategies d’adaptation et securite alimentaire des menages dans les hauts plateaux de minembwe au Sud-Kivu. Agron. Afr. 2020, 32, 207–220. [Google Scholar]
- Pailler, S.; Naidoo, R.; Burgess, N.D.; Freeman, O.E.; Fisher, B. Impacts of community-based natural resource management on wealth, food security and child health in Tanzania. PLoS ONE 2015, 10, e0133252. [Google Scholar] [CrossRef] [Green Version]
- Berhanu, W.; Beyene, F. Climate variability and household adaptation strategies in southern Ethiopia. Sustainability 2015, 7, 6353–6375. [Google Scholar] [CrossRef] [Green Version]
- DSLG Sheets. Sustainable Livelihoods Guidance; Department for International Development: London, UK, 1999. [Google Scholar]
- DFID. Sustainable Livelihoods Guidance Sheets; DFID: London, UK, 1999; Volume 445. [Google Scholar]
- Shami, S.H.; Ahmad, J.; Zafar, R.; Haris, M.; Bashir, S. Evaluating wind energy potential in Pakistan’s three provinces, with proposal for integration into national power grid. Renew. Sustain. Energy Rev. 2016, 53, 408–421. [Google Scholar] [CrossRef]
- Abdullah, R.; Ahmed, N. Political Status of Balochistan from 1971 to 1988. Pak. Study Cent. 2018, 8, 325–334. [Google Scholar]
- Ashraf, M.; Routray, J.K. Perception and understanding of drought and coping strategies of farming households in north-west Balochistan. Int. J. Disaster Risk Reduct. 2013, 5, 49–60. [Google Scholar] [CrossRef]
- Cramer, J.S. Logit Models from Economics and Other Fields; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Greene, W.H. Econometric Analysis; Pearson Education India: Delhi, India, 2003. [Google Scholar]
- Trinh, T.Q.; Rañola, R.F., Jr.; Camacho, L.D.; Simelton, E. Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam. Land Use Policy 2018, 70, 224–231. [Google Scholar] [CrossRef]
- Belderbos, R.; Carree, M.; Diederen, B.; Lokshin, B.; Veugelers, R. Heterogeneity in R&D cooperation strategies. Int. J. Ind. Organ. 2004, 22, 1237–1263. [Google Scholar]
- Gebregziabher, G.; Rebelo, L.-M.; Langan, S. Interdependence in rainwater management technologies: An analysis of rainwater management adoption in the Blue Nile Basin. Environ. Dev. Sustain. 2016, 18, 449–466. [Google Scholar] [CrossRef]
- Lin, C.-T.J.; Jensen, K.L.; Yen, S.T. Awareness of foodborne pathogens among US consumers. Food Qual. Prefer. 2005, 16, 401–412. [Google Scholar] [CrossRef]
- Huguenin, J.; Pelgrin, F.; Holly, A. Estimation of Multivariate Probit Models by Exact Maximum Likelihood; Working Paper 2009; Working Paper 09-02; Institute of Health Economics and Management (IEMS): Lausanne, Switzerland, 2009. [Google Scholar]
- Piya, L.; Maharjan, K.L.; Joshi, N.P. Determinants of adaptation practices to climate change by Chepang households in the rural Mid-Hills of Nepal. Reg. Environ. Chang. 2013, 13, 437–447. [Google Scholar] [CrossRef]
- Tocco, B.; Bailey, A.; Davidova, S. The Reallocation of Agricultural Labour across Sectors: An Empirical Strategy for Micro Data. Factor Markets Working Document No. 45, May 2013, 05-10. Available online: https://ageconsearch.umn.edu/record/155703/ (accessed on 5 June 2023).
- Simelton, E.; Coulier, M.; Carter, A.; Duong, M.T.; Le, T.T.; Thu Luu, T.G. Actionability of Climate Services in Southeast Asia: Findings from ACIS Baseline Surveys in Vietnam, Lao PDR and Cambodia. CCAFS Info Note. Wageningen, Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) 2018. Available online: https://cgspace.cgiar.org/handle/10568/92120 (accessed on 5 June 2023).
- Woodridge, J. Introductory Econometrics. A Modern Approach; Cengage Learning, Inc.: Boston, MA, USA, 2018. [Google Scholar]
- Nhemachena, C.; Hassan, R. Micro-Level Analysis of Farmers Adaption to Climate Change in Southern Africa; International Food Policy Research Institute: Washington, DC, USA, 2007. [Google Scholar]
- Comoé, H.; Siegrist, M. Relevant drivers of farmers’ decision behavior regarding their adaptation to climate change: A case study of two regions in Côte d’Ivoire. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 179–199. [Google Scholar] [CrossRef]
- SeinnSeinn, M.; Ahmad, M.; Thapa, G.; Shrestha, R. Farmers’ adaptation to rainfall variability and salinity through agronomic practices in lower Ayeyarwady Delta, Myanmar. J. Earth Sci. Clim. Chang. 2015, 6, 1000258. [Google Scholar]
- Asfaw, S.; McCarthy, N.; Lipper, L.; Arslan, A.; Cattaneo, A. What determines farmers’ adaptive capacity? Empirical evidence from Malawi. Food Secur. 2016, 8, 643–664. [Google Scholar]
- Jin, J.; Wang, W.; Wang, X. Adapting agriculture to the drought hazard in rural China: Household strategies and determinants. Nat. Hazards 2016, 82, 1609–1619. [Google Scholar] [CrossRef]
- Gentle, P.; Thwaites, R.; Race, D.; Alexander, K.; Maraseni, T. Household and community responses to impacts of climate change in the rural hills of Nepal. Clim. Chang. 2018, 147, 267–282. [Google Scholar] [CrossRef]
- Gentle, P.; Maraseni, T.N. Climate change, poverty and livelihoods: Adaptation practices by rural mountain communities in Nepal. Environ. Sci. Policy 2012, 21, 24–34. [Google Scholar] [CrossRef]
- Khanal, U.; Wilson, C. Derivation of a climate change adaptation index and assessing determinants and barriers to adaptation among farming households in Nepal. Environ. Sci. Policy 2019, 101, 156–165. [Google Scholar] [CrossRef]
Country | Province | Districts | Tehsils | UCs | Villages | Farmers | Samples |
---|---|---|---|---|---|---|---|
Pakistan | Balochistan | Harnai | 2 | 4 | 4 | 108 | 432 |
Loralai | 2 | 4 | 4 | 108 | |||
Killa Saifullah | 2 | 4 | 4 | 108 | |||
Ziarat | 2 | 4 | 4 | 108 |
Variables Name | Descriptions | Mean (S.D) |
---|---|---|
Gander | Gender of farmers (1 = male) | 0.24 (0.43) |
Age | Farmers’ age (years) | 45 (12) |
Education | Farmers’ education (years) | 7.9 (3.8) |
Farm income | Farm income of household (PKR/year) | 16.1 (11.7) |
Level of damage | Level of damage because of extreme weather events (PKR/year). | 1.9 (2.4) |
Tube well | 1 = farmer owner, 0 otherwise | 0.64 (0.48) |
Animal | Number of animals at the farm (number) | 3.47 (1.92) |
Climate Change | 1 = if farmer has experienced related to CC; 0 otherwise | 0.86 (0.34) |
Extension services | 1 = if a grower has aware of extension services; 0 otherwise | 0.27 (0.15) |
Tractor | 1 = if the farmer keeps a tractor; 0 otherwise | 0.09 (0.13) |
Farm size | Farm size (ha) | 6.6 (4.5) |
Labors | Household farm laborers on participating farms | 0.2 (0.1) |
Farming experience | Farmers’ farming experience (years) | 24.01 (12.0) |
Cultivated areas | Area of cultivated (ha) | 6.6 (4.3) |
Wheat productivity | Productivity of wheat (kg/ha) | 1980 (450.8) |
Membership | Member in organizations (1 = yes) | 0.96 (0.20) |
Participation | Participate in CC training (1 = yes) | 0.22 (0.42) |
Indicators | Trained Farmers (112) | Non-Trained (320) | Different Value |
---|---|---|---|
Increase crop production | 63 | 29 | 34 *** |
Decrease crop production | 97 | 62 | 35 *** |
Reduce cultivated land | 8 | 9 | −1 |
Intensify adaptation cost | 15 | 4 | 9 *** |
Soil erosion | 4 | 4 | 0 |
Indicators | Total (n = 432) |
---|---|
Respondents’ percentage that drought has hindered second-season planting | 59 |
Percentage of respondents affected by special circumstances | 80 |
Annual crop loss as a percentage of total crop income | 19 |
Assessed yearly crop loss each year (million PKR) | 2.3 |
Assessed yearly crop loss each year (million PKR) | 8.0 |
Indicators Name | Total
Sample | Trained Farmers (112) | Non-Trained
Farmers (320) | Different Value |
---|---|---|---|---|
Utilize at least one adaption technique | 75 | 87 | 70 | 17 *** |
Particular adaptive techniques | ||||
Adjust farming timing | 28 | 45 | 25 | 20 *** |
Change crop varieties | 68 | 79 | 59 | 20 *** |
Follow-up forecasts of weather | 69 | 87 | 61 | 26 *** |
Change to other cultivar types | 20 | 12 | 22 | −10 |
Intercropping | 8 | 20 | 5 | 15 *** |
Variables Name | Coefficients | p-Value | Marginal Effects | p-Value |
---|---|---|---|---|
Gender | −0.403 | 0.159 | −0.073 | 0.175 |
Education | 0.020 | 0.744 | 0.004 | 0.744 |
Farm size | 0.141 *** | 0.001 | 0.024 *** | 0.001 |
Farming experience | 0.012 | 0.357 | 0.003 | 0.359 |
Damage level | 0.282 ** | 0.026 | 0.048 ** | 0.015 |
Climate Change | 0.03 *** | 0.034 | 0.02 *** | 0.078 |
Animal | 0.278 | 0.263 | 0.048 | 0.271 |
Tube well | 0.04 | 0.035 | 0.03 | 0.079 |
Participation in CC training | 1.137 *** | 0.000 | 0.158 *** | 0.000 |
Extension services | 0.01 *** | 0.55 | 0.002 | 0.017 |
Membership | 0.764 | 0.163 | 0.154 | 0.225 |
Tractor | −0.02 | −1.025 | −0.003 | 0.019 |
Access to credit | 0.286 | 0.272 | 0.050 | 0.281 |
Constant | −1.845 ** | 0.048 | - | - |
Log-pseudo likelihood | −199.33 | - | - | - |
Wald χ2 (12) | 42.59 | - | - | - |
Prob > χ2 | 0.0000 | - | - | - |
Pseudo R2 | 0.1520 | - | - | - |
N | 432 | - | - | - |
Variables
Name | Adaptation Practices | ||||
---|---|---|---|---|---|
Adjust Farming Timing | Follow-Up Weather Forecasts | Change Crop
Variety | Switch to New Cultivate Types | Intercropping | |
Gender | 0.161 | 0.064 | −0.436 *** | −0.113 | 0.071 |
Education | 0.030 | 0.029 | 0.044 | 0.082 | 0.010 |
Farm size | 0.043 *** | 0.066 *** | 0.052 *** | 0.058 *** | 0.010 |
Farming experience | 0.012 | 0.006 | 0.016 ** | 0.016 ** | −0.005 |
Damage level | 0.037 | 0.043 | 0.070 | 0.083 | −0.006 |
Participation in CC training | 0.671 *** | −0.270 | 0.560 *** | 0.670 ** | 0.820 *** |
Climate change | 0.039 *** | 0.064 *** | 0.051 | 0.057 *** | 0.009 |
Household labor | 0.120 | −0.080 | 0.074 | 0.084 | 0.064 |
Extension services | 0.035 | 0.042 | 0.069 | 0.081 | −0.005 |
Membership | 0.630 | 0.560 | 0.623 | 0.470 | 0.141 |
Tractor | 0.010 | 0.003 | 0.012 | 0.015 | −0.004 |
Access to credit | 0.323 ** | 0.195 | 0.066 | 0.260 * | 0.032 |
Constant | −2.706 *** | −2.215 *** | −1.517 ** | −1.916 *** | −1.768 *** |
Correlation | Coefficients | p-value | |||
p21 | 0.530 *** | 0.000 | |||
p31 | 0.360 *** | 0.000 | |||
p41 | 0.215 * | 0.054 | |||
p51 | 0.155 * | 0.054 | |||
p32 | 0.565 *** | 0.000 | |||
p42 | 0.565 *** | 0.000 | |||
p52 | 0.340 *** | 0.002 | |||
p43 | 0.570 *** | 0.000 | |||
p53 | −0.090 | 0.328 | |||
p54 | 0.294 *** | 0.001 | |||
Log-pseudo likelihood | −820.33 | - | |||
Wald χ2 (45) | 138.84 | - | |||
Prob > χ2 | 0.0000 | - | |||
n | 432 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Ma, J.; Zhang, H.; Zhang, S. Rural Farmers’ Perceptions for the Impacts of Climate Change and Adaptation Policies on Wheat Productivity: Insights from a Recent Study in Balochistan, Pakistan. Atmosphere 2023, 14, 1278. https://doi.org/10.3390/atmos14081278
Khan N, Ma J, Zhang H, Zhang S. Rural Farmers’ Perceptions for the Impacts of Climate Change and Adaptation Policies on Wheat Productivity: Insights from a Recent Study in Balochistan, Pakistan. Atmosphere. 2023; 14(8):1278. https://doi.org/10.3390/atmos14081278
Chicago/Turabian StyleKhan, Nawab, Jiliang Ma, Huijie Zhang, and Shemei Zhang. 2023. "Rural Farmers’ Perceptions for the Impacts of Climate Change and Adaptation Policies on Wheat Productivity: Insights from a Recent Study in Balochistan, Pakistan" Atmosphere 14, no. 8: 1278. https://doi.org/10.3390/atmos14081278
APA StyleKhan, N., Ma, J., Zhang, H., & Zhang, S. (2023). Rural Farmers’ Perceptions for the Impacts of Climate Change and Adaptation Policies on Wheat Productivity: Insights from a Recent Study in Balochistan, Pakistan. Atmosphere, 14(8), 1278. https://doi.org/10.3390/atmos14081278