An Assessment of Global Dimming and Brightening during 1984–2018 Using the FORTH Radiative Transfer Model and ISCCP Satellite and MERRA-2 Reanalysis Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model and Data
2.1.1. FORTH Radiation Transfer Model
2.1.2. ISCCP-H
2.1.3. MERRA-2
2.1.4. CERES-EBAF
2.1.5. GEBA and BSRN
2.2. Methodology
3. Results
3.1. Evaluation of FORTH SSR
3.1.1. All Stations
3.1.2. At Station Level
3.2. FORTH-RTM GDB (SSR Trends) and Its Evaluation
3.2.1. Evaluation of FORTH-RTM GDB (SSR Trends)
All Stations
At Station Level
3.2.2. The FORTH-RTM GDB on Global, Hemispherical and Regional Scales
4. Conclusions
- The FORTH-RTM deseasonalized SSR anomalies, which are free of the seasonal cycle, correlate very well with the ground-based measurements, with R values equal to 0.72 and 0.80 for the validation against GEBA and BSRN stations, respectively. On a station level, the computed R values range from −0.27 to 0.98, but the majority of them (61%) are higher than 0.7, with the lowest values occurring in low latitudes, possibly due to uncertainties in the cloud and aerosol input data.
- In general, there is a relatively small underestimation of FORTH-RTM SSR compared to GEBA and BSRN measurements, the mean bias being equal to −4.71 Wm−2 and −14.29 Wm−2 or −2.9% and −7.7%, respectively. However, FORTH-RTM overestimates SSR at low latitudes, probably because of an underestimation of cloud cover and aerosol optical depth data in these regions. The general underestimation suggests that the atmosphere of FORTH-RTM is less transparent than it should be. The average RMSE value is equal to 21.02 Wm−2 (equivalent to 13.1%) for the comparison of FORTH-RTM with GEBA, while the corresponding value for BSRN is equal to 27.68 Wm−2 or 14.9%, pointing to a rather small deviation of the modeled from the measured SSR. The largest RMSE values exist in low and high-latitude regions.
- In all seasons, the model performs better in terms of R, but worse in terms of deviation, with BSRN than GEBA station measurements. Moreover, the evaluation metrics do not exhibit a significant seasonal variation except for BIAS and RMSE in the SH for BSRN stations.
- The comparison of the time series of 12-month moving averages between FORTH-RTM SSR anomalies and GEBA/BSRN sites shows a larger model than station SSR anomalies, positive before 2000 and negative after 2000, which can affect the computed GDB. Indeed, the FORTH-RTM SSR trends show a weaker brightening than the stations’ trends.
- For the period 1984–2018, an agreement is found for 63.5% of matched model gridded and GEBA measured pairs and 54.5% of matched FORTH-RTM pixels and BSRN pairs for 1992–2018 when the sign of GDB (Δ(SSR)) for each station (222 GEBA and 22 BSRN) and the corresponding FORTH-RTM pixels is compared. For Europe, India, and Japan, there is a strong agreement between the FORTH-RTM and stations in terms of GDB signs, putting confidence in the qualitative GDB patterns in these world areas. On the other hand, the FORTH-RTM presents a weak agreement against stations in terms of the SSR changes’ magnitude. More specifically, it underestimates the brightening of most sites. This could be due to inadequate model input data, but also to issues with the stations’ measurements of their own.
- The computed FORTH-RTM 35-year GDB over the 01/1984–12/2018 period, reveals a statistically significant brightening in Europe, parts of Central and NW Africa, Mongolia, Mexico, parts of the tropical Pacific and sub-tropical Pacific and Atlantic Oceans, Brazil and Argentina. In contrast, statistically significant dimming is found over the western Pacific Tropical Warm Pool, India, Southeast Asia, East China, Northern South America, Australia, and some parts of oceans, especially the South Ocean. According to our calculations, different factors are responsible for GDB in different world areas. For example, AOD and cloud cover produce Europe’s brightening, while cloud optical thickness, apart from AOD induces the dimming over India and Eastern Asia. Furthermore, even for the same region, the driving factors of GDB can be different from one decade to another, thus highlighting the complexity of the phenomenon. However, it is found that globally cloud optical depth overall dominates the SSR variations.
- The FORTH-RTM SSR changes, which are affected by the ISCCP artifacts over specific limited ocean areas, show a dimming (decreasing SSR) from 1984 to 2018, equal to −2.22 Wm−2 or −0.063 Wm−2 year−1, with 53.7% of the global FORTH-RTM grids showing dimming. This dimming is found over both land and ocean areas of the globe, but oceans show a stronger dimming (−2.56 Wm−2 or −0.07 Wm−2 year−1) than land (−1.04 Wm−2 or −0.03 Wm−2 year−1). According to FORTH-RTM solar dimming also occurred on a hemispherical basis, being stronger in the Southern than Northern Hemisphere (−2.73 Wm−2 versus −0.48 Wm−2 or −0.08 Wm−2 year−1 versus −0.01 Wm−2 year−1, respectively). The SSR changes listed above are all statistically significant at the 95% confidence level (CL).
- Examining the behavior of the agreement between the signs of GDB of GEBA stations and FORTH-RTM with time, it is found that during the 1980s, 1990s, and 2010s, the model qualitatively reproduces the GDB (dimming in the 1980s and brightening in the 1990s and 2010s) indicated by both references GEBA and BSRN station networks, exhibiting satisfactory performance. Only in the 2000s, the sign of modeled GDB is the opposite of the one suggested by stations, namely a modeled dimming against station-based brightening.
- The brightening (5.52 Wm−2 or −0.16 Wm−2 year−1) in the 1990s estimated by the FORTH-RTM is in line with the rapid global warming driven by anthropogenic greenhouse gases. In the 2000s, when a recent hiatus has taken place, the model indicates a global dimming (−2.57 Wm−2 or −0.07 Wm−2 year−1), which seems to be in line with the deceleration of global warming. In the 2010s, FORTH-RTM suggests a global brightening (3.26 Wm−2 or 0.09 Wm−2 year−1), which is again in line with accelerated global warming. Thus, overall, the (statistically significant at the 95% CL) FORTH-RTM GDB phases seem to be consistent with the accelerating and decelerating decadal phases of global warming since 1990.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FORTH-RTM | Foundation for Research and Technology-Hellas: radiative transfer model |
ISCCP | International Satellite Cloud Climatology Project |
MERRA-2 | Modern-Era Retrospective Analysis for Research and Applications v.2 |
GEBA | Global Energy Balance Archive |
BSRN | Baseline Surface Radiation Network |
SSR | Surface Solar Radiation |
Δ(SSR) | change of SSR (equivalent to GDB) |
GDB | Global Dimming and Brightening |
R | Pearson’s correlation coefficient |
BIAS | mean value of FORTH-RTM minus mean value of stations |
BIAS (%) | 100×BIAS/mean value of stations |
RMSE | Root Mean Squared Error |
RRMSE | Relative Root Mean Squared Error |
M | mean value of FORTH |
Mi | monthly (for the −i month) value of FORTH |
G | mean value of stations |
Gi | monthly (for the −i month) value of stations |
n | the number of monthly data |
TOA | Top of the Atmosphere |
OSR | Outgoing Solar Radiation |
Δ(OSR) | Changes of OSR |
NH | Northern Hemisphere |
SH | Southern Hemisphere |
References
- Muneer, T.; Gueymard, C.H.K. Radiation and Daylight Models, 2nd ed.; Elsevier Butterworth Heinemann: Amsterdam, The Netherlands, 2004; pp. 13–17. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Wild, M.; Roesch, A.; Ammann, C. Global Dimming and Brightening—Evidence and Agricultural Implications. CABI Rev. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Philipona, R.; Behrens, K.; Ruckstuhl, C. How Declining Aerosols and Rising Greenhouse Gases Forced Rapid Warming in Europe since the 1980s. Geophys. Res. Lett. 2009, 36, L02806. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wild, M. A New Look at Solar Dimming and Brightening in China. Geophys. Res. Lett. 2016, 43, 11777–11785. [Google Scholar] [CrossRef]
- Wild, M. Decadal Changes in Radiative Fluxes at Land and Ocean Surfaces and Their Relevance for Global Warming. WIREs Clim. Chang. 2016, 7, 91–107. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Ioannidis, E.; Korras-Carraca, M.-B.; Gavrouzou, M.; Papadimas, C.D.; Matsoukas, C.; Benas, N.; Fotiadi, A.; Wild, M.; Vardavas, I. Global Dimming and Brightening Features during the First Decade of the 21st Century. Atmosphere 2020, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Pavlakis, K.G.; Drakakis, E.; Hatzidimitriou, D.; Vardavas, I. Global Distribution of Earth’s Surface Shortwave Radiation Budget. Atmos. Chem. Phys. 2005, 5, 2847–2867. [Google Scholar] [CrossRef] [Green Version]
- Liepert, B.; Romanou, A. Global Dimming and Brightening and the Water Cycle. Bull. Am. Meteorol. Soc. 2005, 86, 622–623. [Google Scholar]
- Wild, M.; Ohmura, A.; Makowski, K. Impact of Global Dimming and Brightening on Global Warming. Geophys. Res. Lett. 2007, 34, L04702. [Google Scholar] [CrossRef] [Green Version]
- Gilgen, H.; Wild, M.; Ohmura, A. Means and Trends of Shortwave Irradiance at the Surface Estimated from Global Energy Balance Archive Data. J. Clim. 1998, 11, 2042–2061. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Global Dimming: A Review of the Evidence for a Widespread and Significant Reduction in Global Radiation with Discussion of Its Probable Causes and Possible Agricultural Consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Liepert, B.G. Observed Reductions of Surface Solar Radiation at Sites in the United States and Worldwide from 1961 to 1990. Geophys. Res. Lett. 2002, 29, 61-1–61-4. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. Global Dimming and Brightening: A Review. J. Geophys. Res. Atmos. 2009, 114, D00D16. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, M.; Trüssel, B.; Ohmura, A.; Long, C.N.; König-Langlo, G.; Dutton, E.G.; Tsvetkov, A. Global Dimming and Brightening: An Update beyond 2000. J. Geophys. Res. Atmos. 2009, 114, D00D13. [Google Scholar] [CrossRef] [Green Version]
- Norris, J.R.; Wild, M. Trends in Aerosol Radiative Effects over China and Japan Inferred from Observed Cloud Cover, Solar “Dimming,” and Solar “Brightening”. J. Geophys. Res. Atmos. 2009, 114, D00D15. [Google Scholar] [CrossRef]
- Ohmura, A. Observed Decadal Variations in Surface Solar Radiation and Their Causes. J. Geophys. Res. Atmos. 2009, 114, D00D05. [Google Scholar] [CrossRef] [Green Version]
- Badarinath, K.V.S.; Sharma, A.R.; Kaskaoutis, D.G.; Kharol, S.K.; Kambezidis, H.D. Solar Dimming over the Tropical Urban Region of Hyderabad, India: Effect of Increased Cloudiness and Increased Anthropogenic Aerosols. J. Geophys. Res. Atmos. 2010, 115, D21208. [Google Scholar] [CrossRef] [Green Version]
- Kambezidis, H.D. The Solar Radiation Climate of Greece. Climate 2021, 9, 183. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations. Remote Sens. 2016, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Xie, Z.; Dai, A.; Shi, C.; Chen, F. Evaluation of Satellite and Reanalysis Products of Downward Surface Solar Radiation over East Asia: Spatial and Seasonal Variations. J. Geophys. Res. Atmos. 2013, 118, 3431–3446. [Google Scholar] [CrossRef]
- Kambezidis, H. Solar Radiation Modelling: The Latest Version and Capabilities of MRM. J. Fundam. Renew. Energy Appl. 2017, 7, E114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cui, N.; Feng, Y.; Jia, Y.; Li, Z.; Gong, D. Comparative Analysis of Global Solar Radiation Models in Different Regions of China. Adv. Meteorol. 2018, 2018, 3894831. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Wang, K. Determining Factors of Monthly to Decadal Variability in Surface Solar Radiation in China: Evidences from Current Reanalyses. J. Geophys. Res. Atmos. 2019, 124, 9161–9182. [Google Scholar] [CrossRef] [Green Version]
- Deneke, H.M.; Feijt, A.J.; Roebeling, R.A. Estimating Surface Solar Irradiance from METEOSAT SEVIRI-Derived Cloud Properties. Remote Sens. Environ. 2008, 112, 3131–3141. [Google Scholar] [CrossRef]
- Haywood, J.M.; Bellouin, N.; Jones, A.; Boucher, O.; Wild, M.; Shine, K.P. The Roles of Aerosol, Water Vapor and Cloud in Future Global Dimming/Brightening. J. Geophys. Res. Atmos. 2011, 116, D20203. [Google Scholar] [CrossRef] [Green Version]
- Ruckstuhl, C.; Norris, J.R. How Do Aerosol Histories Affect Solar “Dimming” and “Brightening” over Europe?: IPCC-AR4 Models versus Observations. J. Geophys. Res. Atmos. 2009, 114, D00D04. [Google Scholar] [CrossRef] [Green Version]
- Hatzianastassiou, N.; Papadimas, C.D.; Matsoukas, C.; Pavlakis, K.; Fotiadi, A.; Wild, M.; Vardavas, I. Recent Regional Surface Solar Radiation Dimming and Brightening Patterns: Inter-Hemispherical Asymmetry and a Dimming in the Southern Hemisphere. Atmos. Sci. Lett. 2012, 13, 43–48. [Google Scholar] [CrossRef]
- Pinker, R.T.; Zhang, B.; Dutton, E.G. Do Satellites Detect Trends in Surface Solar Radiation? Science 2005, 308, 850–854. [Google Scholar] [CrossRef] [Green Version]
- Hinkelman, L.M.; Stackhouse, P.W., Jr.; Wielicki, B.A.; Zhang, T.; Wilson, S.R. Surface Insolation Trends from Satellite and Ground Measurements: Comparisons and Challenges. J. Geophys. Res. Atmos. 2009, 114, D00D20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, S.; Wild, M.; Jiang, B. Analysis of Surface Incident Shortwave Radiation from Four Satellite Products. Remote Sens. Environ. 2015, 165, 186–202. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Wang, L.; Qin, W. A Comprehensive Research on the Global All-Sky Surface Solar Radiation and Its Driving Factors during 1980–2019. Atmos. Res. 2022, 265, 105870. [Google Scholar] [CrossRef]
- Romanou, A.; Liepert, B.; Schmidt, G.A.; Rossow, W.B.; Ruedy, R.A.; Zhang, Y.-C. 20th Century Changes in Surface Solar Irradiance in Simulations and Observations. Geophys. Res. Lett. 2007, 34, L05713. [Google Scholar] [CrossRef] [Green Version]
- Alexandri, G.; Georgoulias, A.K.; Meleti, C.; Balis, D.; Kourtidis, K.A.; Sanchez-Lorenzo, A.; Trentmann, J.; Zanis, P. A High Resolution Satellite View of Surface Solar Radiation over the Climatically Sensitive Region of Eastern Mediterranean. Atmos. Res. 2017, 188, 107–121. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Sanchez-Lorenzo, A.; Manara, V.; Trentmann, J.; Hollmann, R. Trends and Variability of Surface Solar Radiation in Europe Based on Surface- and Satellite-Based Data Records. J. Geophys. Res. Atmos. 2018, 123, 1735–1754. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Enriquez-Alonso, A.; Wild, M.; Trentmann, J.; Vicente-Serrano, S.M.; Sanchez-Romero, A.; Posselt, R.; Hakuba, M.Z. Trends in Downward Surface Solar Radiation from Satellites and Ground Observations over Europe during 1983–2010. Remote Sens. Environ. 2017, 189, 108–117. [Google Scholar] [CrossRef]
- Dong, B.; Sutton, R.T.; Wilcox, L.J. Decadal Trends in Surface Solar Radiation and Cloud Cover over the North Atlantic Sector during the Last Four Decades: Drivers and Physical Processes. Clim. Dyn. 2023, 60, 2533–2546. [Google Scholar] [CrossRef]
- Wohland, J.; Brayshaw, D.; Bloomfield, H.; Wild, M. European Multidecadal Solar Variability Badly Captured in All Centennial Reanalyses except CERA20C. Environ. Res. Lett. 2020, 15, 104021. [Google Scholar] [CrossRef]
- Stamatis, M.; Hatzianastassiou, N.; Korras-Carraca, M.B.; Matsoukas, C.; Wild, M.; Vardavas, I. Interdecadal Changes of the MERRA-2 Incoming Surface Solar Radiation (SSR) and Evaluation against GEBA & BSRN Stations. Appl. Sci. 2022, 12, 10176. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, N.; Jiang, H.; Yao, L. Evaluation of Reanalysis Surface Incident Solar Radiation Data in China. Sci. Rep. 2020, 10, 3494. [Google Scholar] [CrossRef] [Green Version]
- Hatzianastassiou, N.; Katsoulis, B.; Vardavas, I. Global Distribution of Aerosol Direct Radiative Forcing in the Ultraviolet and Visible Arising under Clear Skies. Tellus B Chem. Phys. Meteorol. 2004, 56, 51–71. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Matsoukas, C.; Drakakis, E.; Stackhouse, P.W., Jr.; Koepke, P.; Fotiadi, A.; Pavlakis, K.G.; Vardavas, I. The Direct Effect of Aerosols on Solar Radiation Based on Satellite Observations, Reanalysis Datasets, and Spectral Aerosol Optical Properties from Global Aerosol Data Set (GADS). Atmos. Chem. Phys. 2007, 7, 2585–2599. [Google Scholar] [CrossRef] [Green Version]
- Vardavas, I.M.; Carver, J.H. Solar and Terrestrial Parameterizations for Radiative-Convective Models. Planet. Space Sci. 1984, 32, 1307–1325. [Google Scholar] [CrossRef]
- Joseph, J.H.; Wiscombe, W.J.; Weinman, J.A. The Delta-Eddington Approximation for Radiative Flux Transfer. J. Atmos. Sci. 1976, 33, 2452–2459. [Google Scholar] [CrossRef]
- Shettle, E.P.; Weinman, J.A. The Transfer of Solar Irradiance through Inhomogeneous Turbid Atmospheres Evaluated by Eddington’s Approximation. J. Atmos. Sci. 1970, 27, 1048–1055. [Google Scholar] [CrossRef]
- Gueymard, C.A. The Sun’s Total and Spectral Irradiance for Solar Energy Applications and Solar Radiation Models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Young, A.H.; Knapp, K.R.; Inamdar, A.; Hankins, W.; Rossow, W.B. The International Satellite Cloud Climatology Project H-Series Climate Data Record Product, Earth Syst. Sci. Data 2018, 10, 583–593. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.W. First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates. Monthly Weather Review. Mon. Weather Rev. 1999, 127, 2204–2210. [Google Scholar] [CrossRef]
- International Satellite Cloud Climatology Project (ISCCP). Climate Data Record, H-Series. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00956 (accessed on 2 August 2023).
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980—Onward, Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Korras-Carraca, M.-B.; Gkikas, A.; Matsoukas, C.; Hatzianastassiou, N. Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). Atmosphere 2021, 12, 1254. [Google Scholar] [CrossRef]
- The Second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2). Available online: http://disc.sci.gsfc.nasa.gov/mdisc/ (accessed on 2 August 2023).
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Loeb, N.G.; Priestley, K.J.; Kratz, D.P.; Geier, E.B.; Green, R.N.; Wielicki, B.A.; Hinton, P.O.; Nolan, S.K. Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument. J. Appl. Meteorol. 2001, 40, 822–835. [Google Scholar] [CrossRef]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-Generation Angular Distribution Models for Top-of-Atmosphere Radiative Flux Calculation from CERES Instruments: Methodology. Atmos. Meas. Tech. 2015, 8, 611–632. [Google Scholar] [CrossRef] [Green Version]
- Doelling, D.R.; Loeb, N.G.; Keyes, D.F.; Nordeen, M.L.; Morstad, D.; Nguyen, C.; Wielicki, B.A.; Young, D.F.; Sun, M. Geostationary Enhanced Temporal Interpolation for CERES Flux Products. J. Atmos. Ocean. Technol. 2013, 30, 1072–1090. [Google Scholar] [CrossRef]
- CERES Data Products. Available online: https://Ceres.Larc.Nasa.Gov/Data/ (accessed on 30 June 2023).
- Michalsky, J.; Dutton, E.; Rubes, M.; Nelson, D.; Stoffel, T.; Wesely, M.; Splitt, M.; Deluisi, J.; Environmental Research; State University of New York; et al. Optimal Measurement of Surface Shortwave Irradiance Using Current Instrumentation. J. Atmos. Ocean. Technol. 1999, 16, 55–69. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Schär, C.; Loeb, N.; Dutton, E.G.; König-Langlo, G. The Global Energy Balance from a Surface Perspective. Clim. Dyn. 2013, 40, 3107–3134. [Google Scholar] [CrossRef] [Green Version]
- Global Energy Balance Archive. Available online: https://geba.ethz.ch/ (accessed on 2 August 2023).
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- World Radiation Monitoring Center (WRMC) Baseline Surface Radiation Network (BSRN). Available online: https://bsrn.awi.de/data/ (accessed on 2 August 2023).
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology; Raj, B., Koerts, J., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 345–381. ISBN 978-94-011-2546-8. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Boudala, F.S.; Milbrandt, J.A. Evaluations of the Climatologies of Three Latest Cloud Satellite Products Based on Passive Sensors (ISCCP-H, Two CERES) against the CALIPSO-GOCCP. Remote Sens. 2021, 13, 5150. [Google Scholar] [CrossRef]
- Tzallas, V.; Hatzianastassiou, N.; Benas, N.; Meirink, J.F.; Matsoukas, C.; Stackhouse, P., Jr.; Vardavas, I. Evaluation of CLARA-A2 and ISCCP-H Cloud Cover Climate Data Records over Europe with ECA&D Ground-Based Measurements. Remote Sens. 2019, 11, 212. [Google Scholar]
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys. 2019, 19, 10497–10523. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Trentmann, J.; Yuan, W.; Wild, M. Validation of CM SAF CLARA-A2 and SARAH-E Surface Solar Radiation Datasets over China. Remote Sens. 2018, 10, 1977. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.B.; Peter, T. Small-Scale Cloud Processes and Climate. Nature 2008, 451, 299–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stensrud, D.J. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gavrouzou, M.; Hatzianastassiou, N.; Gkikas, A.; Korras-Carraca, M.-B.; Mihalopoulos, N. A Global Climatology of Dust Aerosols Based on Satellite Data: Spatial, Seasonal and Inter-Annual Patterns over the Period 2005–2019. Remote Sens. 2021, 13, 359. [Google Scholar] [CrossRef]
- Kotarba, A.Z. Evaluation of ISCCP Cloud Amount with MODIS Observations. Atmos. Res. 2015, 153, 310–317. [Google Scholar] [CrossRef]
- Hinkelman, L.M. The Global Radiative Energy Budget in MERRA and MERRA-2: Evaluation with Respect to CERES EBAF Data. J. Clim. 2019, 32, 1973–1994. [Google Scholar] [CrossRef]
- Cullather, R.I.; Bosilovich, M.G. The Energy Budget of the Polar Atmosphere in MERRA. J. Clim. 2012, 25, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Xiao, Z.; Zhan, X.; Ma, H.; Tian, X. Evaluation of MODIS and Two Reanalysis Aerosol Optical Depth Products over AERONET Sites. Atmos. Res. 2019, 220, 75–80. [Google Scholar] [CrossRef]
- Xia, X.A.; Wang, P.C.; Chen, H.B.; Liang, F. Analysis of Downwelling Surface Solar Radiation in China from National Centers for Environmental Prediction Reanalysis, Satellite Estimates, and Surface Observations. J. Geophys. Res. Atmos. 2006, 111, D09103. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Wang, K.; Wild, M. Impact of Geolocations of Validation Data on the Evaluation of Surface Incident Shortwave Radiation from Earth System Models. J. Geophys. Res. Atmos. 2015, 120, 6825–6844. [Google Scholar] [CrossRef] [Green Version]
- Campbell, G.G. View Angle Dependence of Cloudiness and the Trend in ISCCP Cloudiness. In Proceedings of the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, USA, 20–23 September 2004; p. 6.7. Available online: https://ams.confex.com/ams/13SATMET/techprogram/paper_79041.htm (accessed on 2 August 2023).
- Evan, A.T.; Heidinger, A.K.; Vimont, D.J. Arguments against a Physical Long-Term Trend in Global ISCCP Cloud Amounts. Geophys. Res. Lett. 2007, 34, L04701. [Google Scholar] [CrossRef]
- Norris, J.R. What Can Cloud Observations Tell Us about Climate Variability. Space Sci. Rev. 2000, 94, 375–380. [Google Scholar] [CrossRef]
- Norris, J.R.; Evan, A.T. Empirical Removal of Artifacts from the ISCCP and PATMOS-x Satellite Cloud Records. J. Atmos. Ocean. Technol. 2015, 32, 691–702. [Google Scholar] [CrossRef]
- Karlsson, K.-G.; Devasthale, A. Inter-Comparison and Evaluation of the Four Longest Satellite-Derived Cloud Climate Data Records: CLARA-A2, ESA Cloud CCI V3, ISCCP-HGM, and PATMOS-x. Remote Sens. 2018, 10, 1567. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Ramana, M.V.; Roberts, G.; Kim, D.; Corrigan, C.; Chung, C.; Winker, D. Warming Trends in Asia Amplified by Brown Cloud Solar Absorption. Nature 2007, 448, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Ruckstuhl, C.; Philipona, R.; Behrens, K.; Collaud Coen, M.; Dürr, B.; Heimo, A.; Mätzler, C.; Nyeki, S.; Ohmura, A.; Vuilleumier, L.; et al. Aerosol and Cloud Effects on Solar Brightening and the Recent Rapid Warming. Geophys. Res. Lett. 2008, 35, L12708. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Centers for Environmental Information, Climate at a Glance: Global Mapping. Available online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/mapping (accessed on 2 August 2023).
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA,, 2021; in press. [Google Scholar] [CrossRef]
- Gulev, S.K.; Thorne, P.W.; Ahn, J.; Dentener, F.J.; Domingues, C.M.; Gerland, S.; Gong, D.; Kaufman, D.S.; Nnamchi, H.C.; Quaas, J.; et al. 2021: Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA,, 2021; pp. 287–422. [Google Scholar] [CrossRef]
- Easterling, D.R.; Wehner, M.F. Is the Climate Warming or Cooling? Geophys. Res. Lett. 2009, 36, L08706. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.; Rahmstorf, S. Global Temperature Evolution 1979–2010. Environ. Res. Lett. 2011, 6, 044022. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Winn, J.P.; Hogan, E.; Killick, R.E.; Dunn, R.J.H.; Osborn, T.J.; Jones, P.D.; Simpson, I.R. An Updated Assessment of near-Surface Temperature Change from 1850: The HadCRUT5 Data Set. J. Geophys. Res. Atmos. 2021, 126, E2019JD032361. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Wild, M.; Brunetti, M.; Guijarro, J.A.; Hakuba, M.Z.; Calbó, J.; Mystakidis, S.; Bartok, B. Reassessment and Update of Long-Term Trends in Downward Surface Shortwave Radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 2015, 120, 9555–9569. [Google Scholar] [CrossRef] [Green Version]
- Padma Kumari, B.; Goswami, B.N. Seminal Role of Clouds on Solar Dimming over the Indian Monsoon Region. Geophys. Res. Lett. 2010, 37, L06703. [Google Scholar] [CrossRef] [Green Version]
- Soni, V.K.; Pandithurai, G.; Pai, D.S. Is There a Transition of Solar Radiation from Dimming to Brightening over India? Atmos. Res. 2016, 169, 209–224. [Google Scholar] [CrossRef]
- Tanaka, K.; Ohmura, A.; Folini, D.; Wild, M.; Ohkawara, N. Is Global Dimming and Brightening in Japan Limited to Urban Areas? Atmos. Chem. Phys. 2016, 16, 13969–14001. [Google Scholar] [CrossRef] [Green Version]
FORTH-GEBA | ANNUAL | DJF | MAM | JJA | SON |
R | 0.96 (0.72) | 0.97 (0.67) | 0.92 (0.74) | 0.90 (0.73) | 0.97 (0.71) |
BIAS | −4.71 (−2.9%) | −1.52 (−1.5%) | −7.26 (−3.9%) | −7.26 (−3.3%) | −2.63 (−2.0%) |
RMSE | 21.02 (13.1%) | 18.17 (17.9%) | 22.86 (12.1%) | 24.35 (11.1%) | 17.77 (13.5%) |
slope | 0.94 (0.68) | 0.96 (0.63) | 0.9 (0.68) | 0.89 (0.7) | 0.97 (0.68) |
intercept | 4.64 | 2.1 | 11.34 | 17.43 | 1.3 |
mean_FORTH | 156.24 | 99.92 | 181.07 | 212.57 | 128.95 |
mean_stations | 160.94 | 101.44 | 188.33 | 219.83 | 131.57 |
N | 188,412 | 45,658 | 47,813 | 47,539 | 47,402 |
stations | 1193 | 1177 | 1190 | 1177 | 1191 |
FORTH-BSRN | ANNUAL | DJF | MAM | JJA | SON |
R | 0.96 (0.80) | 0.96 (0.77) | 0.95 (0.81) | 0.94 (0.81) | 0.95 (0.82) |
BIAS | −14.29 (−7.7%) | −16.65 (−11.1%) | −17.15 (−8.6%) | −12.12 (−5.2%) | −11.29 (−7.0%) |
RMSE | 27.68 (14.9%) | 32.76 (21.8%) | 26.47 (13.2%) | 24.28 (10.4%) | 26.72 (16.6%) |
slope | 0.92 (0.82) | 0.87 (0.82) | 0.97 (0.83) | 0.9 (0.79) | 0.93 (0.84) |
intercept | −0.25 | 3.03 | −11.03 | 11.36 | 0.42 |
mean_FORTH | 171.93 | 133.27 | 183.04 | 220.71 | 149.89 |
mean_stations | 186.22 | 149.92 | 200.2 | 232.82 | 161.19 |
N | 9462 | 2275 | 2429 | 2342 | 2416 |
stations | 66 | 59 | 65 | 63 | 65 |
GEBA Periods | Agreement (%) | GEBA Δ(SSR) (W/m2) | GEBA (BRI, DIM) | FORTH_Pixel Δ(SSR) (W/m2) | FORTH_Pixel (BRI, DIM) |
---|---|---|---|---|---|
1984–1989 | 66.1 | −2.51 | (251,318) | −1.03 | (261,308) |
1990–1999 | 60 | 1.40 | (260,215) | 2.75 | (341,134) |
2000–2009 | 51.2 | 2.99 | (228,104) | −1.70 | (114,218) |
2010–2018 | 73.2 | 1.88 | (221,118) | 5.18 | (287,52) |
BSRN Periods | Agreement (%) | BSRN Δ(SSR) (W/m2) | BSRN (BRI, DIM) | FORTH_Pixel Δ(SSR) (W/m2) | FORTH_Pixel (BRI, DIM) |
---|---|---|---|---|---|
1992–1999 | 63.6 | 2.05 | (7,4) | 2.14 | (5,6) |
2000–2009 | 50 | 0.5 | (18,14) | −0.68 | (14,18) |
2010–2018 | 65.9 | 0.14 | (20,21) | 3.06 | (30,11) |
FORTH | 1984–2018 | 1984–1989 | 1990–1999 | 2000–2009 | 2010–2018 |
---|---|---|---|---|---|
GLOBAL | −2.22 | −3.53 | 5.52 | −2.57 | 3.26 |
N.H. | −0.48 | −2.84 | 7.58 | −2.71 | 3.43 |
S.H. | −2.73 | −3.60 | 3.59 | −2.46 | 2.70 |
LAND | −1.04 | −3.56 | 5.47 | −3.47 | 2.56 |
LAND N.H. | −0.41 | −2.87 | 6.70 | −3.48 | 1.51 |
LAND S.H. | −1.37 | −2.11 | 2.76 | −1.64 | 3.74 |
OCEAN | −2.56 | −3.43 | 5.38 | −2.56 | 3.41 |
OCEAN N.H. | −0.46 | −2.11 | 8.07 | −2.45 | 4.17 |
OCEAN S.H. | −2.83 | −3.80 | 4.12 | −2.60 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamatis, M.; Hatzianastassiou, N.; Korras-Carraca, M.-B.; Matsoukas, C.; Wild, M.; Vardavas, I. An Assessment of Global Dimming and Brightening during 1984–2018 Using the FORTH Radiative Transfer Model and ISCCP Satellite and MERRA-2 Reanalysis Data. Atmosphere 2023, 14, 1258. https://doi.org/10.3390/atmos14081258
Stamatis M, Hatzianastassiou N, Korras-Carraca M-B, Matsoukas C, Wild M, Vardavas I. An Assessment of Global Dimming and Brightening during 1984–2018 Using the FORTH Radiative Transfer Model and ISCCP Satellite and MERRA-2 Reanalysis Data. Atmosphere. 2023; 14(8):1258. https://doi.org/10.3390/atmos14081258
Chicago/Turabian StyleStamatis, Michael, Nikolaos Hatzianastassiou, Marios-Bruno Korras-Carraca, Christos Matsoukas, Martin Wild, and Ilias Vardavas. 2023. "An Assessment of Global Dimming and Brightening during 1984–2018 Using the FORTH Radiative Transfer Model and ISCCP Satellite and MERRA-2 Reanalysis Data" Atmosphere 14, no. 8: 1258. https://doi.org/10.3390/atmos14081258
APA StyleStamatis, M., Hatzianastassiou, N., Korras-Carraca, M. -B., Matsoukas, C., Wild, M., & Vardavas, I. (2023). An Assessment of Global Dimming and Brightening during 1984–2018 Using the FORTH Radiative Transfer Model and ISCCP Satellite and MERRA-2 Reanalysis Data. Atmosphere, 14(8), 1258. https://doi.org/10.3390/atmos14081258